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munkiana early life stage individuals aggregate in the shallow bay of Ensenada Grande outlined with 

a yellow square. The map was created using Surface Mapping System (Golden Software, Inc., 1993-

2012, https://www.goldensoftware.com/products/surfer) and the coastline data was extracted from 

GEODAS-NG (National Geophysical Data Center, 2000). 

Figure 2-2. (a) Capture locations of M. munkiana between August 2017 and June 2018 at Ensenada 

Grande. Circle size indicates the number of individuals captured at each location by life stage. 

Numbers indicates the bathymetric lines. (b) Number of M. munkiana captured at Ensenada Grande 

per month and life stage following the same color code.  

Figure 2-3. (a) Mobula munkiana detection map between August 2017 and May 2019 at La Paz Bay 
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4 

Serrano–Lopez et al. 2021). Black crosses (x) indicate courtship and mating from the literature, and 

white crosses (x) indicate courtship and mating observations in the present study. Devil ray species 
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of the female (events 82 and 72). Photos © Laurent Ballesta. (d) Courtship abrasions on the posterior 

half of the disc on female’s dorsal side indicated by white arrows (May 2022). Photo © Marta D. 

Palacios. 
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Murcia (d, e) Pregnant females with fetal bulge on their dorsal side indicated by white arrows. Photos 
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ABSTRACT 
 

Manta and devil rays (mobulids) are filter feeding elasmobranchs with extreme K-selective life 

histories found circumglobally from temperate to tropical waters. Their vulnerability to fisheries 

exploitation, bycatch, boat collisions, entanglement and unregulated tourism is exacerbated by their 

aggregative behavior. Studies have identified aggregation sites around the world for all nine mobulid 

species, with these groupings varying from a few individuals to thousands. However, the terminology 

used to define these aggregations and the drivers underpinning them remain unclear, hindering the 

development of effective management and conservation strategies. Here, we analyze aggregation 

behavior for mobulid species, providing consistent definitions for grouping events and summarizing 

the existing research on drivers and environmental factors triggering these events. We find that 

aggregation behaviors facilitate key life history functions in mobulids, including feeding, courtship and 

mating, predation avoidance, cleaning, and thermoregulation. Conservation threats and management 

mitigation opportunities associated with aggregations sites include fisheries, tourism, spatial 

protection, and climate change. Finally, we highlight knowledge gaps for future research prioritization 

and developments in the field for the identification of aggregation sites, the study of aggregation size 

and demographics and the functions and timing of aggregations.  

On the other hand, Munk’s pygmy devil rays (Mobula munkiana) are medium-size, zooplanktivorous 

filter feeding, elasmobranchs characterized by aggregative behavior, low fecundity and delayed 

reproduction. These traits make them susceptible to targeted and by-catch fisheries and are listed as 

Vulnerable on the IUCN Red List. Multiple studies have examined fisheries impacts, but nursery areas 

or foraging neonate and juvenile concentrations have not been examined. This study describes the 

first nursery area for M. munkiana at Espiritu Santo Archipelago, Mexico. We examined spatial use of 

a shallow bay during 22 consecutive months in relation to environmental patterns using traditional 

tagging (n = 95) and acoustic telemetry (n = 7). Neonates and juveniles comprised 84% of tagged 

individuals and their residency index was significantly greater inside than outside the bay; spending a 

maximum of 145 consecutive days within the bay. Observations of near-term pregnant females, 

mating behavior, and neonates indicate an April to June pupping period. Anecdotal photograph review 

indicated that the nursery area is used by neonates and juveniles across years. These findings 

confirm, for the first time, the existence of nursery areas for Munk’s pygmy devil rays and the potential 

importance of shallow bays during early life stages for the conservation of this species.  

Finally, we examined the reproductive behavior (courtship and mating) and its seasonality in three 

Mobula species, spinetail, bentfin, and Munk’s devil rays (M. mobular, M. thurstoni, and M. munkiana) 

in the southwestern Gulf of California, Mexico, using boat surveys (with drone and in–water 

observations) (n=69 survey days), spotter planes (n= 428 flights) and citizen science observations 

(n=31). We examined whether (1) reproductive grounds existed within the area for any of these 
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species, (2) whether reproductive behavior followed seasonal patterns, and (3) if this behavior was 

similar among all mobula rays. We observed reproductive behavior in 221 events in 2017 and 2021–

2022, for M. mobular (n=10), M. thurstoni (n=3), and M. munkiana (n=208) dispersed along 312 km 

of the eastern Baja California Peninsula between 4 m to 6.3 km away from the coast. Most events 

(n=209) occurred in the La Ventana and Ensenada de Muertos areas. Courtship was observed for M. 

mobular and M. thurstoni and a copulation attempt for M. munkiana, with reproductive behavior 

following a seasonal pattern occurring from March to August, with a peak during May (81.9 % of the 

events). Mobula munkiana displayed previously undescribed behaviors, such as the “piggyback leaps” 

as a precopulatory position and the “courtship vortex”, where 122 individuals were observed circling 

in a clockwise direction for five hours with courtship groups joining and leaving the main vortex 

formation. This study highlights the areas of La Ventana and Ensenada de Muertos as critical habitats 

for reproductive behavior of two endangered and one vulnerable devil ray species.  
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RESUMEN 
 

Las rayas mobulas (mobúlidos) son elasmobranquios filtradores con historias de vida 

extremadamente conservadoras del tipo K-selectivas que se encuentran globalmente distribuidas, 

desde aguas templadas a tropicales. Su vulnerabilidad a la explotación pesquera, la captura 

incidental, las colisiones con embarcaciones, el enredo y el turismo no regulado se ve exacerbada 

por su comportamiento de agregación. Estudios han identificado sitios de agregación en todo el 

mundo para las nueve especies de mobúlidos, con estos grupos variando desde unos pocos 

individuos hasta miles. Sin embargo, la terminología utilizada para definir estas agregaciones y los 

impulsores que las sustentan siguen siendo poco claros, dificultando el desarrollo de estrategias 

efectivas de gestión y conservación. Aquí analizamos el comportamiento de agregación de las 

especies de mobúlidos, proporcionando definiciones consistentes para eventos de agrupación y 

resumiendo la investigación existente sobre los impulsores y factores ambientales que desencadenan 

estos eventos. Descubrimos que los comportamientos de agregación facilitan funciones clave en la 

historia de vida de los mobúlidos, incluyendo la alimentación, el cortejo y el apareamiento, la evasión 

de la depredación, la limpieza y la termorregulación. Las amenazas de conservación y las 

oportunidades de mitigación de la gestión asociadas con los sitios de agregación incluyen la pesca, 

el turismo, la protección espacial y el cambio climático. Finalmente, destacamos lagunas de 

conocimiento para la priorización de investigaciones futuras y desarrollos en el campo para la 

identificación de sitios de agregación, el estudio del tamaño y la demografía de las agregaciones, y 

las funciones y el momento de las agregaciones. 

 

Por otro lado, las rayas mobulas pigmeas de Munk (Mobula munkiana) son elasmobranquios 

filtradores de tamaño mediano, zooplanctívoros, con comportamiento de agregación, baja fecundidad 

y reproducción tardía. Estas características los hacen susceptibles a la pesca dirigida y la captura 

incidental, y están clasificados como Vulnerables en la Lista Roja de la UICN. Varios estudios han 

examinado los impactos de la pesca, pero no se han examinado áreas de cría o agregaciones de 

neonatos y juveniles. Este estudio describe la primera área de críanza para M. munkiana en el 

Archipiélago Espíritu Santo, México. Examinamos el uso espacial de una bahía poco profunda 

durante 22 meses consecutivos en relación con patrones ambientales utilizando marcaje tradicional 

(n = 95) y telemetría acústica (n = 7). Los neonatos y juveniles comprendieron el 84% de los individuos 

marcados y su índice de residencia fue significativamente mayor dentro que fuera de la bahía, 

pasando un máximo de 145 días consecutivos dentro de la bahía. Observaciones de hembras 

preñadas a término, comportamiento de apareamiento y neonatos indican un período de 

alumbramiento de abril a junio. La revisión anecdótica de fotografías indicó que el área de cría es 

utilizada por neonatos y juveniles a lo largo de los años. Estos hallazgos confirman, por primera vez, 
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la existencia de áreas de crianza para las rayas mobulas pigmeas de Munk y la importancia potencial 

de las bahías poco profundas durante las primeras etapas de vida para la conservación de esta 

especie. 

 

Finalmente, examinamos el comportamiento reproductivo (cortejo y apareamiento) y su 

estacionalidad en tres especies de rayas mobula (M. mobular, M. thurstoni y M. munkiana) en el 

suroeste del Golfo de California, México, utilizando muestreos desde embarcación (con 

observaciones de drones y bajo el agua) (n = 69 días de muestreo), avioneta ultraligera (n = 428 

vuelos) y observaciones de ciencia ciudadana (n = 31). Examinamos si (1) existían áreas de 

reproducción dentro del área para cualquiera de estas especies, (2) si el comportamiento reproductivo 

seguía patrones estacionales y (3) si este comportamiento era similar entre todas las rayas mobula. 

Observamos comportamiento reproductivo en 221 eventos en 2017 y 2021–2022, para M. mobular 

(n = 10), M. thurstoni (n = 3) y M. munkiana (n = 208) dispersas a lo largo de 312 km de la península 

de Baja California, entre 4 m y 6.3 km de distancia de la costa. La mayoría de los eventos (n = 209) 

ocurrieron en las áreas de La Ventana y Ensenada de Muertos. Se observó cortejo para M. mobular 

y M. thurstoni y un intento de cópula para M. munkiana, con un patrón estacional que ocurrió de 

marzo a agosto, con un pico durante mayo (81.9% de los eventos). Mobula munkiana mostró 

comportamientos previamente no descritos, como los "saltos a cuestas" como posición precopulatoria 

y el "vórtice de cortejo", donde se observó a 122 individuos dando vueltas en sentido horario durante 

cinco horas, con grupos de cortejo uniéndose y saliendo de la formación principal del vórtice. Este 

estudio destaca las áreas de La Ventana y Ensenada de Muertos como hábitats críticos para el 

comportamiento reproductivo de dos especies de rayas mobula en peligro de extinción y una 

vulnerable. 
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Introduction 

It is well documented that many elasmobranchs form large aggregations, varying from temporary 

groups to structured, long-term associations (e.g., hammerhead sharks, basking sharks, blacktip 

sharks, and common stingrays) (Klimley 1987; Ward et al., 2004; Croft et al., 2006; Ward et al., 2007; 

Croft et al., 2011; Crowe et al., 2018; Chaikin et al., 2020; Ayres et al., 2021; Sims et al., 2022). The 

functions of such aggregation behaviors have been hypothesized to include reproduction (Klimley 

1987; Chaikin et al., 2020; Sims et al 2022), feeding (De la Parra Venegas et al., 2011), energy 

conservation, (Klimley and Nelson 1984; Economakis and Lobel, 1998; Hight and Lowe 2007), refuge 

from predators (Heupel et al., 2007; McAllister et al., 2017) and social learning (Sih et al., 2009; Brown 

and Laland 2011). The formation of these aggregations can be seasonal and is often linked to 

environmental factors and life history stages (Rohner et al., 2013; Kajiura and Tellman 2016), food 

abundance (Clua et al., 2013; Hacohen-Domené et al., 2015), critical habitats (Oh et al., 2017, 

Chiriboga-Paredes et al., 2022) and reproduction (Heupel and Simpfendorfer 2005; Reyier et al., 

2008). The seasonality of these aggregation events, along with the large number of individuals at 

specific areas (i.e., coastal areas, productive systems) can also increase the likelihood and intensity 

of exposure to anthropogenic threats such as targeted fishing (Litvinov 2006, Croll et al., 2016), 

bycatch (Watson et al., 2009; Hall and Roman 2013), habitat degradation (Cattano et al., 2021), 

irresponsible tourism (Venables et al., 2016; Zemah-Shamir et al., 2019), boat strikes (Lester et al., 
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2020; Allen et al., 2021; Womersley et al., 2022) or climate change (particularly if mismatches in the 

timing of migration, reproduction or foraging interactions occur) (Lezama-Ochoa et al., 2023, in prep).  

Among elasmobranchs, the nine manta and devil ray species (collectively referred to as mobulids) 

inhabit tropical to temperate waters circumglobally (Couturier et al., 2012; Stevens et al., 2018a; 

Stewart et al., 2018a). Mobulids seasonally form aggregations ranging from a few to thousands of 

individuals (Anderson et al., 2011; Couturier et al., 2012; Stevens 2016; Harris and Stevens 2021; 

Palacios et al., 2021). These aggregations often occur in habitats or locations associated with 

concentrated food resources (Couturier et al., 2011; Armstrong et al., 2016; Harris et al., 2020; Harris 

and Stevens 2021), parasite removal (O’Shea et al., 2010; Jaine et al. 2012; Perryman et al., 2019), 

thermal refugia (Stevens 2016; Palacios et al., 2021), reproductive behavior (Mendonça et al., 2020), 

and predator avoidance (Germanov et al., 2019; Pate and Marshall 2020). Mobulids are also highly 

vulnerable to overexploitation due to their low fecundity (one pup per pregnancy, low birth rate, and 

delayed reproduction), leading to slow population growth rates (Stevens et al., 2000; Dulvy et al., 

2014). The primary anthropogenic threat to mobulids is fisheries exploitation from both targeted 

fisheries and bycatch (Croll et al., 2016). Mobulid rays' tendency to aggregate in productive pelagic 

areas, where commercially valuable species are targeted by both artisanal and industrial fisheries 

using a variety of gears (e.g. gillnets, purse-seines, and longlines) results in bycatch being a primary 

impact for most species of mobulid rays (Hall and Roman 2013; Rohner et al., 2013; Croll et al., 2016; 

Lezama-Ochoa et al., 2019a) and contributes to declines in  mobulid populations globally (Couturier 

et al. 2013; Lawson et al., 2017; Rohner et al., 2017). As a result, all mobulid species are listed as 

Endangered or Vulnerable on the IUCN’s Red List of Threatened Species (IUCN, 2022). Furthermore, 

mobulid aggregations in coastal areas can lead to exposure to boat collisions (Germanov et al., 2019; 

Pate and Marshall 2020; Strike et al., 2022), habitat degradation (Stewart et al., 2018a) and 

unregulated tourism impacts (Venables 2013; Murray et al., 2020; Gómez-García et al., 2021). The 

identification of aggregation sites for some species has led to the creation of Marine Protected Areas 

(MPAs) (e.g., UNESECO World Heritage Sites Revillagigedo Archipelago in Mexico, and Hanifaru 

Bay MPA in Maldives) and the establishment of management measures, such as best practices to 

reduce the mortality of mobulids caught incidentally by tuna purse seiners, or codes of conducts to 

ensure responsible tourism practices (Poisson et al., 2012; Lezama-Ochoa et al., 2019b; Murray et 

al., 2020, Cronin et al., 2022).  

The aim of this review is to: 1) provide consistent definitions and terminology for mobulid aggregation 

and grouping events; 2) summarize existing research on the drivers and environmental factors 

underpinning aggregation events in mobulids; 3) identify conservation threats, management 

strategies, and mitigation opportunities associated with aggregation sites; and 4) identify knowledge 

gaps for future research prioritization. 
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Figure 1. Conceptual framework of grouping behaviors in elasmobranchs. Aggregation (individuals 
are passively drawn together) is the general term to describe any group and the first prerequisite for 
the formation of social groups (individuals are drawn to one another). Life history functions (in white 
italics) acting as drivers of manta and devil ray aggregations. In grey are the key aggregation sites 
where these life history fuctions occurs. 
 

 

2. Aggregation and social grouping in mobulids  

The terminology used in describing aggregation behavior in elasmobranchs is often inconsistent and 

confusing (McInturf et al. in review). Here we present a conceptual framework (Figure 1) to classify 

the different types of aggregation behaviors that have been described in the elasmobranch literature. 

We propose aggregation as the most general term, which can be used to describe any group of 

individuals that forms for any purpose (Johnson et al., 2002; Guttridge et al., 2009; Guttal and Couzin 

2010; Jacoby et al., 2012). Some aggregations can be social groups, within which individuals exhibit 

interactive behaviors such as courtship, mating (Sims et al., 2022), or cooperative feeding (Mourier et 

al., 2012), and dynamic associative relationships among individuals may be present (Guttridge et al., 

2009; Jacoby et al., 2012). In several marine species including elasmobranchs, these associations 
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have been described as fission-fusion dynamics, where groups merge (fusion) or split (fission) 

depending on various factors including the costs and benefits of the size of the group (e.g., increased 

competition for food versus reduced predation risk) (Haulsee et al., 2016).   

Social grouping can facilitate collective behaviors like cooperative or optimal feeding (Sih et al., 2009, 

Villegas-Ríos et al., 2022), predator avoidance (Chivers et al., 1995; Ward et al., 2011), and social 

learning (Lachlan et al.,1998; Brown et al., 2011). Aggregations are likely the first prerequisite for the 

establishment of social grouping because they facilitate the establishment of social interactions among 

aggregating individuals (Sims et al., 2000; Jacoby et al., 2012).  

Aggregation behavior has been documented in all mobulid species (Table 1) (Childs 2001; Weeks et 

al., 2015; Stevens 2016; Couturier et al., 2018; Lezama-Ochoa et al., 2019a; Solleliet-Ferreira et al., 

2020; Palacios et al., 2021; Harris and Stevens 2021, McCann et al., 2021). However, less attention 

has been paid to the social interactions within aggregations that may be indicative of more complex 

social grouping (Marshall and Bennett 2010a; Stewart et al., 2017a; Stevens et al., 2018b; Perryman 

et al., 2019; Murray 2019). Nonetheless, some mobulid aggregations have been described as social 

groups (Marshall and Bennett 2010a; Stevens 2016; Stevens et al., 2018b; Perryman et al., 2019). 

Within aggregations and social groups, segregation by size and sex has been observed (Notarbartolo 

di Sciara 1988; Cerutti 2005; Stewart et al., 2018a; Stevens 2016; Germanov et al., 2019; Perryman 

et al., 2019; Palacios et al., 2021) (Table 1 Supplementary material). 

Mobulids possess the highest brain: body weight ratios of all fishes, with enlarged telencephalon 

regions (Ari 2011). The telencephalon region drives complex social behaviors in other animals, 

including for the establishment of dominance hierarchies and social bonds (Dunbar and Shultz 2007; 

Ari 2011). However, the few studies analyzing the social structure of mobulids have focused only on 

reef manta rays (Mobula alfredi) and have found social groups that last for only short durations (weeks) 

where interactions are open with fluid hierarchical social structures among females and juveniles 

(Perryman et al., 2019) or unstructured aggregations with associations based on spatiotemporal 

overlap among individuals driven by food availability (Murray 2019).   

2.1. Drivers of mobulid aggregations 

Aggregation behaviors facilitate key life history functions in mobulids, including feeding, courtship and 

mating, predation avoidance, cleaning, and thermoregulation (Figure 1). Locations where one or more 

aggregation drivers are present and predictable can become key aggregation sites that are used 

repeatedly by mobulids, such as cleaning stations and feeding sites, or sites that facilitate long-term 

stable aggregations such as nurseries (Figure 2). Below, we describe the importance of aggregation 

behavior in each of these life history functions and at these key sites. 

2.1.1 Feeding aggregations 

Large aggregations are often driven by feeding behavior associated with mobulids’ reliance on dense 

prey assemblages that may correspond to seasons and locations with higher productivity and prey 
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abundance (Notarbartolo-di-Sciara, 1988; Jaine et al., 2012; Anderson et al., 2011; Stevens 2016; 

Hacohen-Domene et al., 2017; Stewart et al., 2017b; Lezama-Ochoa et al., 2019b, 2020; Harris and 

Stevens 2021). In the most closely studied example of large feeding aggregations (M. alfredi), no 

cooperative grouping behavior was observed, indicating that these feeding aggregations are likely 

site-specific behaviors in which prey availability and site characteristics lead to local enhancement of 

prey (Silverman et al., 2004; Jourdaina and Vongraven 2017) and the co-occurrence of multiple 

individuals, with prey availability likely also determining the group size (Murray 2019).   

 
 
Tabe 1. Grouping behavior for mantas and devil rays. * Maximum aggregation size from tuna purse 
seine fisheries data and is the number of individuals in one single set. References refer to the 
maximum aggregation size.  
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These aggregations in areas of local enhancement may also be easier to find because of the presence 

of conspecifics feeding on them, further increasing aggregation size and improving foraging efficiency 

by reducing search time (Thorpe 1963; Galef 2013). In some cases, the coordination of several 

feeding individuals may also facilitate prey concentration, enhance prey capture, and increase 

foraging efficiency (Lett et al., 2014). In mobulids, this coordinated behavior occurs during several 

feeding strategies, such as piggyback, chain, lunge, or cyclone feeding (Stevens 2016; Stevens et al., 

2018b; Bucair et al., 2021) described below. 

 

 

 

Figure 2. Manta and devil rays aggregation sites worldwide by species (colors) and drivers of the 
aggregation or social group (geometric figure). Aggregations illustrated with an X have no information 
related to the purpose of the group.  
 

Large-scale oceanographic processes and regimes such as seasonal upwelling systems (La Niña in 

the Eastern Tropical Pacific, and the South Asian Monsoon in the Indian Ocean) have a strong 

influence on the occurrence of mobulid aggregations (Anderson et al., 2011; Stevens 2016; Burgess 

2017; Beale et al., 2019; Lezama-Ochoa et al., 2019a, b; Harris et al., 2020; Harty et al., 2022; 

Fonseca-Ponce et al., 2022). At fine scales, the bathymetry of aggregation sites, combined with tidal 

cycles and tidal currents, helps accumulate and condense zooplankton at densities up to 40 times 

higher than in surrounding waters (Armstrong et al., 2016), triggering feeding aggregations such as
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those described in the Maldives (Stevens 2016; Harris and Stevens 2021), eastern Australia 

(Armstrong et al., 2016), and the Chagos Archipelago (Harris et al., 2021). In conjunction with these 

environmental factors, moon phases have also been shown to influence the presence of M. alfredi at 

several aggregation sites (Dewar et al., 2008; Anderson et al., 2011; Jaine et al., 2012; Harris and 

Stevens 2021). These mobulid feeding aggregations can be influenced by zooplankton size, species, 

and concentration. For example, in Hanifaru Bay, Maldives, Armstrong et al. (2021) found that M. 

alfredi formed feeding aggregations when the zooplankton community was dominated by large 

crustaceans (copepods) and total biomass was greater than a theoretical prey density threshold for 

net energy gain (25.2 mg m3). At this feeding aggregation site, the foraging opportunities appeared to 

occur when strong lunar tides overcame the force of the prevailing monsoonal current, drawing 

plankton-rich water from deep waters outside the atoll into the shallow reef inlet (Harris and Stevens 

2021) attracting up to 250 M. alfredi individuals (Stevens 2016; Harris et al., 2020) (Table 2). 

Interactions between lunar tides and bathymetry may be a coherent explanation for why moon phase 

and tidal range have been identified as important predictors of mobulid presence at many aggregation 

sites (Dewar et al., 2008; Anderson et al., 2011; Jaine et al., 2012; Harris and Stevens 2021; Fonseca-

Ponce et al., 2022). At Lady Elliot Island, Australia, however, M. alfredi began feeding in aggregations 

at lower prey densities than this theoretical density threshold (Armstrong et al., 2016). Here, river 

outflow, dynamic eddy activity, convergent fronts and ebb tides triggered large M. alfredi feeding 

aggregations of more than 150 individuals (Weeks et al., 2015). 

During feeding aggregations, social groups can be formed as coordinated feeding strategies emerge 

(e.g., chain, piggyback and lunge feeding). Here, mobulids use the position of a conspecific to improve 

their chances of successful feeding, enhancing prey capture, hydrodynamic efficiency, and collision 

avoidance between individuals (Stevens 2016; Stevens et al., 2018a; Solleliet-Ferreira et al., 2020; 

Armstrong et al., 2021; Harris and Stevens 2021). Such coordinated feeding has been described in 

M. alfredi, M. birostris, M. kuhlii, M. munkiana, M. hypostoma, M. eregoodoo and M. tarapacana while 

feeding on zooplankton and shoals of anchovies or mesopelagic lanternfish (Stevens 2016; Stevens 

et al., 2018a; Stewart et al., 2018c; Solleliet-Ferreira et al., 2020; Bucair et al., 2021) (Figure 3B, G). 

An additional type of coordinated feeding, cyclone feeding, has been described for M. alfredi in the 

Maldives (Steven 2016; Stevens et al., 2018a) involving up to 150 individuals circling in an 

anticlockwise direction in the water column, resembling a 15 m diameter cyclone, for as long as 60 

minutes (Stevens 2016). This behavior presumably creates hydrodynamic conditions favorable to 

foraging success and is correlated with high zooplankton biomass values over 200 mg m-3 (Armstrong 

et al., 2021) (Figure 3E). 

 

2.1.2 Courtship and mating aggregations 
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Courtship and mating in elasmobranchs are often complex and variable across species (Carrier et al., 

1994; Pratt and Carrier 2001). Under our conceptual framework, all reproductive aggregations would 

be considered social groups. Some elasmobranch species form reproductive social groups via active 

partner preferences that can be sporadic and short (Jacoby et al., 2012). In mobulids, reproductive 

social groups seem to be initiated by males (Stevens et al., 2018b).  

 

 

Table 2. Types of aggregations and social groups based on drivers of the groups for manta and devil 
rays. Only studies with >10 individuals aggregating at the same time were considered in this table. 
(NS) Not stated in the study. Grey highlight cells are aggregations not protected or not fully protected 
by Marine Protected Areas. 
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The duration of reproductive social groups may be related to the number of males involved in the 

courtship of the female, with more extended periods when more males are involved (Marshall and 

Bennett 2010a). This reproductive behavior has been described for five mobulid species (Table 2) at 

oceanic islands, seamounts, ridge systems, coral reefs, feeding aggregation sites, cleaning stations, 

and within the thermocline at depths between 50 to 80 m (Yano et al., 1999; Marshall and Bennett 

2010a; Sobral 2013; Stevens et al., 2018b; Germanov et al., 2019; Stewart et al., 2019; Mendonça et 

al., 2020). During courtship events, several individuals are generally involved, with one or two females 

chased by as many as 26 males (Stevens et al., 2018b).  

Reproductive social groups are often seasonal. In M. alfredi in Mozambique, fresh mating wounds 

and mating events were observed during the austral summers from October to January (Marshall and 

Bennett 2010a). While M. tarapacana (Saint Peter and Saint Paul Archipelago, Brazil) and M. 

munkiana (Gulf of California, Mexico) are present year-round, social groups displaying courtship and 

mating behaviors occur only during spring and summer months. Mobulids are believed to give birth 

shortly before mating (Uchida et al., 2008; Stevens et al., 2018a) and the seasonality of courtship and 

mating groups may therefore be linked to seasonal food availability and higher temperatures that 

would benefit the development of neonates (Notarbartolo-di-Sciara, 1988; Mendonça et al., 2020; 

Palacios et al., 2021). The reported aggregations of M. mobular in the southeast corner of the 

Mediterranean Sea (off the coasts of Palestine and Israel) during the coldest time of year could be 

related to the rays accessing the portion of the Mediterranean where sea temperatures are mildest. 

Evidence of mating was reported in this region based on the presence of oozing sperm in males 

caught in the fishery (Abudaya et al., 2017). 
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Figure 3. Mobulid aggregations. (A) M. hypostoma in the Mexican Caribbean. Photo © Guy Stevens. 
(B) A feeding aggregation of M. eregoodoo at Raja Ampat, Indonesia. Photo © Jeff Lemelin. (C) M. 
kuhlii aggregation in the Maldives. Photo © Guy Stevens. (D) M. munkiana aggregating in the Gulf of 
California, Mexico. Photo © Siddharta Velázquez Hernández, Ocean Life Flights. (E) M. alfredi during 
a cooperative feeding aggregation in Hanifaru Bay, Maldives. Photo © Guy Stevens. (F) Aggregation 
of M. mobular in the Gulf of California, Mexico. Photo © Siddharta Velázquez Hernández, Ocean Life 
Flights. (G) M. tarapacana at  Princess Alice Banks, Azores. Photo © Tane Sinclair-Taylor. 
 

2.2.3 Predator avoidance aggregations 

Forming aggregations may help diminish the risk of predation in elasmobranchs (Heupel and 

Simpfendorfer 2005). Mobulids have several known predators, mainly sharks and killer whales (Alava 

and Merlen 2009; Marshall and Bennet, 2010a; Stevens et al., 2018a). Larger species of mobulids 

(M. birostris and M. alfredi) tend to form smaller aggregations than smaller species, such as the pygmy 

devil rays (M. munkiana, M. eregoodoo, M. hypostoma, and M. kuhlii; Table 1) and are more likely to 

survive attacks with different degrees of sublethal injuries (Marshall and Bennett, 2010b; Deakos et 

al., 2011; Strike et al., 2022). However, survival from predation on pygmy devil rays is less likely to 

occur, although no studies have formally addressed sub-lethal injuries or natural mortality of pygmy 

devil rays. The larger aggregations formed by pygmy devil rays may have evolved as a predator-

avoidance strategy for these smaller species (Broadhurst et al., 2018; Notarbartolo-di-Sciara et al., 

2019).  

Aggregating at protected or sheltered habitats during vulnerable periods, such as early life stages, to 

reduce predation risk has been observed in several elasmobranch species (Heupel et al., 2007; 

Heupel and Simpfendorfer 2011). Aggregations at cleaning stations may also help reduce predation 
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risk because of the shallow bottom habitats that helps protect mobulids (M. alfredi) from shark attacks 

from below (Stevens 2016; Stewart et al., 2018b). 

Mobulids exhibit substantial maternal investment in a single offspring, and individuals may take 5-15 

years to reach sexual maturity, depending on the species (Couturier et al., 2012; Stevens 2016; 

Stewart et al., 2018a). Mobulids appear to utilize nursery areas, where neonates or juveniles 

aggregate in a similar manner to many other elasmobranchs (Heupel et al., 2007; Martins et al., 2018). 

This aggregation behavior results in higher residency in habitats that appear to enhance the survival 

of neonates and juveniles (Heupel and Simpfendorfer 2011). During early life stages, social behaviors 

(Reyier et al., 2008), active association with conspecifics (Guttridge et al., 2009), and even individual 

personalities (Finger et al., 2017) have been described for some shark species (e.g., lemon sharks). 

To date, there is no evidence of similar social behaviors in mobulid nurseries. However, aggregating 

in nursery areas at vulnerable life history stages may be critical to reduce predation in early life stage 

mobulids. Mobulid nurseries have been identified at reef lagoons (Setyawan et al., 2022a), along the 

coast (Pate and Marshall 2020; Knochel et al., 2022), estuarine systems (Medeiros et al., 2015), and 

at shallow bays (Germanov et al., 2019; Palacios et al., 2021). These nearshore areas likely provide 

refuge from predators (Stevens 2006; Stewart et al., 2018a, b; Palacios et al., 2021; Setyawan et al., 

2022a) as well as foraging opportunities (Setyawan et al., 2022a). Nursery areas have been described 

for juvenile M. birostris, (Childs 2001; Medeiros et al., 2015; Stewart et al., 2018b; Pate and Marshall 

2020; Knochel et al., 2022), M. alfredi (Germanov et al., 2019; Setyawan et al., 2022a), and M. 

munkiana (Palacios et al., 2021). Neonates and juveniles have been shown to use and aggregate in 

these nursery areas with the occasional presence of adult individuals (Germanov et al., 2019; Palacios 

et al., 2021). Group sizes within mobulid nurseries tend to be smaller than adult aggregations (e.g., 

maximum of 19 juvenile individuals in M. munkiana compared with adult aggregations of thousands 

of individuals) (Palacios et al., 2021). In some of these nursery areas there is segregation by size 

(Palacios et al., 2021), similar to descriptions in other juvenile elasmobranchs (Guttridge et al., 2011), 

which could be the result of differences in swimming capabilities or habitat preferences at different 

size/age stages (Jacoby et al., 2012).  

 

2.2.4 Cleaning aggregations 

Cleaning stations play a vital role in the ecology and health of several mobulid species by providing 

an opportunity for them to rid themselves of harmful parasites by being cleaned by small fishes 

(O’Shea et al., 2010). Cleaning stations are well-defined areas, typically on inshore reefs or around 

seamounts (Jaine et al., 2012) where small ‘cleaner’ fishes (primarily Labridae) feed on the 

ectoparasites, mucus, dead or diseased tissue and scales of their larger ‘clients’ (Grutter 1996, 
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O’Shea et al., 2010) creating a mutually symbiotic interaction (Hay et al., 2004). Aggregations at 

cleaning stations have been documented in M. kuhlii (Murie and Marshall 2016), M. birostris and M. 

alfredi (which in many cases exhibit strong site fidelity to the station) (Table 2) (Dewar et al., 2008; 

O’Shea et al., 2010; Marshall and Bennett 2010b; Stewart et al., 2016a; Setyawan et al., 2018). 

In addition to providing health benefits, these sites also provide opportunities where social interactions 

among individuals can occur (Stevens 2016; Stevens et al., 2018a, b; O’Shea et al., 2010; Perryman 

et al., 2019). The aggregation of mobulids at cleaning stations also has the potential to facilitate 

reproductive social behaviors, acting as lek sites for these species (Stevens 2016). For example, 

courtship and mating behavior in M. alfredi are frequently observed at cleaning stations in the Maldives 

(Stevens 2016; Stevens et al., 2018b) and Indonesia (Dewar et al., 2008; Germanov et al., 2019; 

Perryman et al., 2019). In Australia, M. alfredi visits at cleaning stations last for an average of 30 

minutes per visit and up to five hours at the same site, facilitating frequent social interactions among 

individuals before, during, or after cleaning (O’Shea et al., 2010). In Raja Ampat, Indonesia, cleaning 

sites with as many as of 55 mobulids present at the same time have been described (Perryman et al., 

2019). At the Revillagigedo Archipelago, Mexico, M. birostris have been observed socializing at 

different cleaning stations, including repetitive movements of the cephalic lobes and half-somersault 

maneuvers between individuals (Stewart et al., 2017a; Stewart et al., 2019).  

2.2.5 Thermal refugia aggregations 

Water temperature is a major driver of changes in movement and habitat use in elasmobranchs 

(Schlaff et al., 2014), and may affect metabolic and physiological functions such as digestion, 

reproduction, and somatic growth (Wallman and Bennett 2006; Hight and Lowe 2007; Tenzing 2014). 

Mobulids are found in tropical and temperate seas with an optimal thermal range from 20 to 26°C in 

the case of M. alfredi (Couturier et al., 2012; Lassauce et al., 2022). However, several species (M. 

birostris, M. alfredi, M. tarapacana, M. mobular and M. munkiana) preform deep dives, possibly to 

feed on zooplankton and other prey concentrated in the mesopelagic and bathypelagic zones (Stewart 

et al., 2016b; Lassauce et al., 2022; Andrzejaczek et al., 2022) where water temperatures can reach 

< 4°C (Thorrold et al., 2014). After deep dives in cold water, mobulids bask at the surface as a 

behavioral thermoregulation mechanism to warm up their body temperatures (Canese et al., 2011; 

Thorrold et al., 2014; Stewart et al., 2016b; Lassauce et al., 2022). Aggregations during basking 

behavior at shallow coastal waters have been observed in M. birostris in Bahia de Banderas (Mexico), 

presumably after mesopelagic and thermocline associated foraging (Fonseca-Ponce et al., 2022). 

Coastal nursery areas for M. birostris in the Gulf of Mexico and enclosure estuaries in Brazil and for 

M. munkiana in the Gulf of California (where higher residency occurred during warmer temperatures) 

could also provide thermal refugia that accelerate the metabolic rates and growth of juveniles and 
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thereby reduce the duration of these vulnerable life history stages (Tenzing 2014; Stewart et al., 

2018b; Palacios et al., 2021) (Table 2). In Maldives, individuals aggregating at warmer inshore reefs 

around cleaning stations and staying for longer periods than the cleaning activity, may be augmenting 

metabolic and physiological functions after deep water feeding forays (Stevens 2016). Surface 

aggregations of M. mobular and M. tarapacana in the Mediterranean Sea and the Azores, 

respectively, have been repeatedly observed (Celona 2004; Sobral 2013; Notarbartolo-di-Sciara et 

al., 2015; Solleliet-Ferreira et al., 2020), coinciding with diving data in the area, suggesting that 

basking behavior could be a thermal recovery strategy after deep dives (Canese et al. 2011; Thorrold 

et al. 2014) (Figure 3F). Aggregations at the surface during basking behavior may exacerbate the 

vulnerability of these species to anthropogenic threats, such as boat strikes (Stevens 2016; Fonseca-

Ponce et al., 2022; Strike et al., 2022) and bycatch (Canese et al., 2011).  

 

3. Conservation threats and management mitigation opportunities 

As a group with extreme K-selective life history strategies, mobulids are vulnerable to overexploitation, 

and as a result are suffering from large population declines worldwide (Dulvy et al., 2014; Pardo et 

al., 2016; Rohner et al., 2017; Dulvy et al., 2021; Fernando and Stewart 2021). Mobulid aggregations 

occur at sites that serve important functions (e.g., feeding, reproduction) for the survival and recovery 

of threatened populations (Stevens et al., 2018b; Germanov et al., 2019; Setyawan et al., 2022a). The 

tendency of mobulids to aggregate in these areas can increase their vulnerability to anthropogenic 

activities by increasing the likelihood that multiple individuals will be impacted by any single threat 

(e.g., a single gill net or purse seine) (Croll et al., 2016; Rohner et al., 2017; Stewart et al., 2018a). 

Effective conservation and management for mobulids will benefit from the identification of mobulid 

aggregation sites, knowledge of the geographical extent from which the aggregation sites draw 

individuals, their seasonality, and the various environmental components influencing them to develop 

effective threat mitigation strategies through conservation measures at aggregations sites.  

3.1 Fisheries  

Targeted fishery exploitation and bycatch of mobulid aggregations is leading to major populations 

declines (e.g., M. mobular, M. tarapacana. M. birostris and M. thurstoni in Sri Lanka; Fernando and 

Stewart 2021) and even local extinctions (e.g., M. birostris in the Gulf of California and Mobula spp. 

in several regions in Indonesia; Lewis et al., 2015; Stewart et al., 2016a). Fisheries targeting mobulids 

still occur throughout the ranges of most species, including areas where aggregations and social 

groups occur (e.g., Sri Lanka, Indonesia, India, Peru, Philippines, Palestine, West Africa; Couturier et 

al., 2013; Acebes and Tull 2016; Setyawan et al., 2020; Fernando and Stewart 2021; Guirkinger et 

al., 2021). In industrial fisheries, tuna purse seine vessels in all tropical oceans of the world have 

relatively high bycatch of mobulids due to the overlap between tuna and mobulid species distributions 

within productive regions (Croll et al., 2012; Lezama-Ochoa et al., 2019a, b, 2020; Grande et al., 2020; 
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Guirhem et al., 2021). Captures of up to 220 individuals (M. thurstoni) from a single purse seine set 

have been reported (Lezama-Ochoa et al., 2019a), indicating the potential for incidental captures of 

aggregations to have a major impact on mobulid populations. Records of >50 bycaught mobulids 

within a single purse seine set normally occur at productive oceanographic fronts (e.g., off Peru in 

March for M. mobular; the Galapagos islands in December for M. thurstoni) (Lezama-Ochoa et al., 

2019a) (Table 3). The spatial and temporal distribution data of mobulid bycatch collected by scientific 

observer programs is a powerful tool for identifying where and when large mobulid aggregations may 

occur and where they overlap with tuna purse seine fisheries. These datasets have been used in the 

creation of species distribution models for several mobulid species (Lezama-Ochoa et al., 2019b, 

2020). The use of tracking data to validate or complete fisheries datasets are essential to support the 

effective development of spatially restricted seasonal areas as management strategies (Lezama-

Ochoa et al., 2019a). Understanding the oceanographic preferences of these species may help to 

reduce their interactions with fisheries if dynamic spatial management approaches are implemented, 

as has already successful applied to other fisheries to reduce bycatch (Hazen et al., 2018). 

Mobulid bycatch in artisanal fisheries is poorly documented worldwide, but it exists in at least 21 small 

scale fisheries (Lewis et al., 2015; Croll et al., 2016; Alfaro-Cordova et al., 2017). In a coastal stingray 

fishery in the Gulf of California, up to 84 M. munkiana have been bycaught in a single net at an 

aggregation area described as a nursery ground for this species (Del-Valle-González-González 2018; 

Palacios et al., 2021) (Table 3). In coastal Peru, an artisanal pelagic gillnet fishery using surface 

driftnet to target pelagic sharks and yellowfin tuna, reported several sets with more than 60 mobulid 

individuals per set in the coastal area in front of the Zorritos locality (Alfaro-Cordova et al., 2017). 

Furthermore, bather-protection nets in Australia have also shown to affect a pygmy devil ray species, 

M. eregoodoo (Broadhurst et al., 2018). There is an urgent need for regulations in artisanal fisheries 

to monitor and mitigate the bycatch rates of mobulids, as well as the quantification of post-release 

survival of bycaught mobulid species in these fisheries. Mitigation of bycatch at aggregation sites 

could be achieved with spatio-temporal closures for gillnets at critical habitats, such as nursery areas 

or feeding aggregations. Fishing bans of mobulids should also be considered throughout their range, 

while identifying mobulid aggregations at specific times and locations can offer important management 

and conservation opportunities (Clark et al., 2014) such as the designation of spatial protection areas. 

Such an approach is being included in the identification of Important Shark and Ray Areas (ISRAs) 

for mobulids (Hyde at al. 2022). However, socio-economic surveys among fishermen communities 

and associated stakeholders should also be implemented to understand the economic and social 

impacts that can arise from such management designations (e.g., Peru; Guirkinger et al., 2021).     
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Table 3. Manta and devil ray aggregations obtained from artisanal fisheries, industrial fisheries, and 
bather protection nets* data. Max aggregation size corresponds to the number of individuals within a 
single set (commercial tuna purse seiners) or a single net (artisanal fisheries or bather protection net). 
 

 

 

 

 

 

 

 

 

 

3.2 Tourism 
Predictable aggregations of mobulids at specific locations offer opportunities to develop non-

consumptive uses such as ecotourism focused on observing and swimming with mobulids. Tourist 

activities with mobulids at aggregation sites have been reported for several species worldwide: M. 

alfredi in Australia, Indonesia, and Maldives (Venables 2013; Germanov et al., 2019; Murray et al., 

2020), M. birostris in Mexico and Ecuador (Kumli and Rubin, 2010; Burgess 2017; Gómez-García et 

al., 2021; Harty et al., 2022), M. tarapacana in the Azores (Sobral 2013, Solleliet-Ferreira et al., 2020), 

and M. munkiana in the Gulf of California (Palacios et al., 2021). Manta and devil ray tourism not 

associated with aggregation sites is also widespread globally (O’Malley et al., 2013). Mobulid tourism 

can contribute significantly to local economies (Gallagher et al., 2011; O’ Malley et al., 2013), with 

direct economic benefits of manta ray tourism to the global economy estimated to be at least $140 

USD million annually (O’ Malley et al., 2013). While ecotourism is a potential economic opportunity, 

the large number of individuals present at mobulid aggregations can increase their vulnerability to 

unregulated or poorly implemented tourism activities (Harris et al., 2020).  

Tourist disruption at feeding aggregation sites, where mobulids benefit from temporally high-density 

prey patches, can reduce food intake, potentially diminishing fitness (Venables 2013; Murray et al., 

2020). Similarly, tourism at mobulid cleaning aggregation sites can result in anthropogenic impacts 

from SCUBA divers with poor buoyancy generating physical damage to the cleaning site substrate, 

which is often coral and may also impact the cleaner fish community (Toyoshima and Nadaoka 2015). 

Mobulids may be disrupted during their cleaning activities or when engaging in social behaviors such 

as courtship or mating (Murray et al. 2020). 

Species   Aggregation region 

Max 

aggregation 

size 

Seasonality References 

M. birostris 

Eastern Tropical Pacific 

(Equatorial Area) 
200 June 

Lezama-Ochoa et al., 2019a 

 (Costa Rica Dome) 167 August 

M. mobular 
Palestine (Gaza strip) 35 February Abudaya et al., 2017 

Peru 162 March 
Lezama-Ochoa et al., 2019a 

M. thurstoni Peru 97 April 

M. 

eregoodoo* 

 Australia (Eastern 

coast) 
6 April Broadhurst et al., 2018 

M. munkiana 
Mexico (Espiritu Santo 

Archipelago) 
84 

March-

September 

Del-Valle-González-González 

2018 

Mobulid spp. Peru (Zorritos) >60 October-January Alfaro-Cordova et al., 2017 
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Anthropogenic disturbance to M. alfredi by boats accessing nursery and courtship areas for tourism 

was observed in Indonesia (Germanov et al., 2019). In Ningaloo Reef, Australia, feeding M. alfredi 

were disturbed or showed a behavioral response in 34 % of tourism interactions (Venables 2013). In 

the Maldives, Hanifaru Bay is considered the most important feeding site for M. alfredi in terms of the 

number of individuals aggregating at the same time (Harris et al. 2020; Armstrong et al., 2021). Due 

to the predictability and size of the groups at this site, a large tourist industry around manta rays has 

been established at the site. In a recent study, avoidance responses by M. alfredi at Hanifaru were 

reported in 37% of the observations, and the animals’ natural behavior was stopped or changed during 

in-water interactions with humans (Murray et al., 2020). In Mexico, M. birostris at aggregation sites 

showed higher probabilities of evasive behavior when interacting with divers actively chasing 

individuals (Gómez-García et al., 2021). While several studies have described anthropogenic 

disturbances for manta rays at aggregation sites (Venables 2013; Germanov et al., 2019; Murray et 

al., 2020; Gómez-García et al., 2021), and addressed potentially problematic human-manta 

interactions by developing science-based best practices guidelines or codes of conduct (e.g. How to 

Swim with Manta Rays; swimwithmantas.org), these types of studies and guidelines are largely non-

existent for the smaller devil rays. Finally, increased tourism at mobulid aggregations may increase 

the risk of other lethal and sublethal impacts such as boat strikes and entanglements in mooring lines 

(Lester et al., 2020; Allen et al., 2021; Womersley et al., 2022; Strike et al., 2022).  

To address these problems, greater effort in educating guides, boat captains, and tourists should be 

put in place at local communities and businesses that benefit from tourist activities with mobulids. This 

can be achieved by guides who give educational briefings before in-water activities and then enforce 

these recommendations throughout the encounter (Murray et al., 2020). MPAs can be established to 

provide regulations and enforcement of boat traffic limits, boat speeds, and snorkeler or diver 

capacities in such critical aggregation sites, helping to reduce anthropogenic threats to mobulids. 

3.3 Spatial Protection and Important Shark and Ray Areas (ISRAs) 

Spatial protection, particularly if based on ISRAs, can play an important role in protecting populations 

from anthropogenic impacts at aggregation sites (Murray et al., 2020; Germanov et al., 2019; 

Setyawan et al., 2022b). ISRAs provide refereed, actionable information on sites that are critical to 

mobulid survival, such as aggregations (Hyde et al., 2022). While it is likely not feasible to protect the 

entire home ranges of most mobulid species, aggregation sites for mobulids may encompass 

important areas for critical life history stages (Marshall and Bennett 2010a; Stevens 2016; Germanov 

et al., 2019; Setyawan et al., 2022b). Indeed, the establishment of spatial protections for megafauna 

at aggregation sites has proven to be extremely successful when paired with adequate enforcement 

and surveillance and when local communities directly benefit from the protection of their surrounding 

https://swimwithmantas.org/
https://swimwithmantas.org/
https://swimwithmantas.org/
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areas (e.g., Cabo Pulmo, El Vizcaíno Biosphere Reserve and Bahía de Loreto National Park; Aburto-

Oropeza et al., 2011; Urbán and Viloria-Gómora 2021).  

Many mobulid aggregation sites with established spatial protection are primarily focused on the larger-

bodied mobulid species, especially manta rays (Weeks et al., 2015; Germanov et al., 2019; Armstrong 

et al., 2021; Harris et al., 2021). Important aggregation areas are largely unknown for pygmy devil 

rays, which are smaller in size but with a greater tendency for aggregation behavior and a more coastal 

distribution (Stevens et al., 2018a; Murie and Marshall 2016; Notarbartolo-di-Sciara et al., 2019; 

Palacios et al., 2021). These species are likely to be threatened by coastal and artisanal fisheries 

(Smith et al., 2009; Rojas-Perea 2016; Del-Valle-González-González 2018), where very little 

information exists on bycatch rates (Fernando and Stewart 2021; Mustika et al, 2021) making it 

challenging to use fishery reports to identify aggregation areas or to establish bycatch mitigation 

strategies.  

Despite protection of mobulid species in most of their distributional range and their inclusion in 

international trade management measures such as the Convention on International Trade in 

Endangered Species of Wild Fauna and Flora (CITES) and the Convention on the Conservation of  

Migratory Species of Wild Animals (CMS), targeted fisheries and opportunistic bycatch retention 

persists in some countries (Akyol et al., 2005; Acebes and Tull, 2016; Alfaro-Cordova et al., 2017;  

Fernando and Stewart 2021; Guirkinger et al., 2021). Without specific action to understand the 

occurrence of mobulid aggregations and their overlap with and susceptibility to human impacts, a 

major biological and ecological vulnerability for these species will remain unaddressed. 

3.4 Climate change  

Climate change is one of the most important anthropogenic threats to vulnerable marine megafauna 

such as mobulid rays and is predicted to increase the intensity and frequency of changes in 

environmental conditions (Cheung et al., 2009; Stewart et al., 2018a). These environmental changes 

may cause mobulid aggregation sites to shift to new locations in search of more favorable conditions 

or to follow new prey distributions. As a result, predator and prey shifts may occur at different 

magnitudes and directions (Hazen et al., 2013), potentially impacting specialized predators like 

mobulid rays (e.g., M. mobular in the Gulf of California, Mexico) (Lezama-Ochoa et al., 2023, in prep). 

Phenological changes, including changes to reproductive periodicity, foraging, or migration may affect 

their populations. Current protected areas at aggregation sites may not be efficient if mobulids’ new 

distributions do not match previously established boundaries. In these cases, more dynamic 

management approaches may be preferential (Lewison et al., 2015; Dunn et al., 2016). Understanding 

long-term changes in the distribution of mobulid rays is essential to identify species most at risk and 

anticipate management options. Species distribution model outputs combined with global climate 

models are an important tool for projecting species’ shifts and future habitat (Lezama-Ochoa et al., 

2023, in prep). 

javascript:;
javascript:;
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4. Key knowledge gaps and developments in the field  

4.1 Identification of aggregation sites 

Most mobulid aggregation sites have been identified by opportunistic observations from divers or 

fishermen using Traditional Ecological Knowledge surveys (Anderson et al., 2011; Sobral 2013; 

Burgess 2017; Palacios et al., 2021). Once aggregation sites are proposed or identified through initial 

observations, they can be further studied using tracking technology (such as active and passive 

acoustic telemetry, as well as satellite tagging studies) to determine when and how often mobulid 

aggregations occur in these locations in the absence of active observation effort (Figure 4) (Dewar et 

al., 2008; Setyawan et al., 2020; Peel et al., 2020; Andrzejaczek et al., 2020; Harris and Stevens 

2021; Palacios et al., 2021). For the identification of aggregation sites in pelagic habitats, fishery-

dependent data offer a unique opportunity to obtain large-scale information on species distribution, 

group sizes, and seasonality over long periods of time and with wide spatiotemporal coverage 

(Notarbartolo-di-Sciara, 1988; White et al., 2006; Croll et al., 2016; Abudaya et al., 2017; Lezama-

Ochoa et al., 2019a; Fernando and Stewart 2021). Scientific observer programs implemented in some 

industrial fisheries can facilitate the collection of information on environmental parameters from remote 

sensing databases, bycatch species, abundance, and bycatch size frequencies (Lezama-Ochoa et 

al., 2019a, b; 2020). Remote aggregation sites can also be identified by sporadic or standardized 

aerial surveys, as demonstrated through the identification of aggregation sites of M. mobular in the 

Mediterranean and M. birostris in the Caribbean Seas (Notarbartolo-di-Sciara and Hillyer 1989; 

Notarbartolo di Sciara et al., 2015). Further, the use of aerial surveys from seaplanes or helicopters 

assisting industrial fisheries to locate their target catch could potentially aid real-time identification and 

bycatch avoidance of mobulid grouping events (Cronin et al., 2022). 

 

 

Figure 4. Illustration of key knowledge gaps in manta and devil ray aggregation research, 
and proposed methods and technologies for developments in the field.  
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4.2 Aggregation size and demographics 

Sorting of aggregations by size and sex have been observed for several species of mobulids (Stevens 

2016; Perryman et al., 2019; Germanov et al., 2019; Mendonça et al., 2020; Palacios et al., 2021). 

For manta rays, photo identification using distinctive ventral markings has been used for decades to 

produce comprehensive databases of dozens of manta ray populations globally and estimate their 

population size and structure (Germanov et al., 2014; Marshall et al., 2011; Stevens et al., 2018b; 

Harty et al., 2022; Cabral et al., 2023). However, information on the demographic composition of 

aggregations and how it relates to aggregation size and function is lacking for most species, especially 

the smaller devil rays. 

Emerging technologies can facilitate the collection of more detailed demographic data in aggregations. 

To investigate individual size distributions in aggregations, the use of photogrammetry (both in-water 

and via aerial drones) is an affordable and non-invasive option for the analysis of the size and sex 

structures of aggregations (Deakos 2010; Setyawan et al., 2020; Setyawan et al., 2022c). Body size 

of individuals, which is a proxy for maturity stage in mobulids (Stevens 2016; Rambahiniarison et al., 

2018), can be measured using calibrated underwater stereo camera systems and paired-laser 

photogrammetry, enabling accurate estimates of ray disc width and other body measures (Deakos 

2010; Langlois et al., 2012). Furthermore, the use of calibrated stereo camera systems and R software 

packages such as StereoMorph (Olsen and Westneat 2015) allow for accurate measurement of 

several individuals in the same frame. The use of drones for mobulid research has not been widely 

applied; however, the few studies using this technology have shown that they can be a useful tool to 

determine morphometric measurements, such as disc length, width, and cranial width using the known 

length of a floating object as a reference scale (Setyawan et al., 2022c). Furthermore, photo 

identification of somersaulting manta rays, determination of female maturity based on the presence of 

mating scars, and male maturity by the extension and calcification of claspers is also possible to collect 

at aggregation and social grouping sites using drones (Pate and Marshall 2020; Setyawan et al., 2020; 

2022c). Autonomous underwater cameras placed in strategic sites such as cleaning stations can 

provide continuous coverage, allowing presence/absence analysis and eliminating the potential 

deterrent effect of diver presence (Barr and Abelson 2019). From underwater video transects operated 

by SCUBA divers or free divers, to stationary underwater video stations at grouping sites, these 

methods have proven valuable in collecting data on abundance, body size, sex ratios, maturity status 

and even behavior of mobulids at grouping sites (O’Shea et al., 2010; Deakos 2012; Stevens et al., 

2018b; Stewart et al., 2018a; Barr and Abelson 2019). Beyond observational technology, emerging 

population genetic and genomic techniques (e.g., RAD sequencing and/or full genome sequencing) 

can allow for assessments of relatedness within aggregations, as well as calculations of population 

size estimates that can be used to contextualize aggregations within the larger population (Sigsgaard 

et al., 2017; Lieber et al., 2020). Additionally, genetic studies could test whether kin aggregation occurs 
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in mobulids, whether aggregating individuals originate from shared or differing original populations, 

and broadly the extent to which genetic factors shape aggregation behavior (Selwyn et al., 2022). 

Recent research using population genomic methods for mobulids (e.g., Hosegood et al., 2020; 

Lassauce et al., 2022; López et al., 2022) has laid the foundation for more fine-scale investigations of 

genomics within and between aggregating groups. 

 

4.3 Function and timing of aggregations 

Understanding function, structure, timing, frequency, and size of mobulids aggregations is critical for 

mobulid conservation, as it will improve predictions of where and when large aggregations are most 

vulnerable to human impacts, and what life stages or demographic units are represented. To address 

these gaps, habitat use and behaviors at aggregation sites can be studied using technologies such 

as drones (Setyawan et al., 2020; 2022c), acoustic telemetry (Dewar et al., 2008; Harris and Stevens 

2021; Palacios et al., 2021), crittercams with sensors (Stewart et al., 2019), in-person observations 

from citizen science (Sobral 2013; Germanov et al., 2019) and underwater visual census with fixed 

cameras or operated by divers or snorkelers (Germanov et al., 2019) (Figure 4). Drones can also 

collect high-resolution aerial images of marine megafauna, documenting grouping behavior, 

abundance, and distribution, in a replicable manner over time and space (Johnston et al., 2019; 

Schofield et al., 2019) with low disturbance towards wildlife and habitats when appropriately used 

(Kiszka et al., 2016; Colefax et al., 2018). Detectability issues can be challenging for submerged fauna 

like sharks and rays (Brack et al., 2018). However, mobulids often have dark dorsal coloration, large 

body sizes (Stevens et al., 2018a), a tendency to form aggregations or social groups (Stevens 2016; 

Lezama-Ochoa et al., 2019a; Perryman et al., 2019) and a preference to swim near the surface in the 

water column (Croll et al., 2012; Thorrold et al., 2014; Stevens et al., 2018a; Lezama-Ochoa et al., 

2019a) making them good candidates for study using drone technology. Using fixed transects with 

drones can be an efficient strategy to monitor seasonal changes in abundance, behavior, and 

population demographics, while also providing quantitative data on habitat use that can be replicated 

over years (Perryman et al., 2019; Setyawan et al., 2020). In addition to aerial observation, visitation 

patterns obtained through acoustic telemetry or visual data collected from underwater surveys can 

inform habitat use and aggregation behavior, especially when correlated with environmental factors 

such as temperature, conductivity, chlorophyll-a concentrations, zooplankton abundance and tides 

(Dewar et al., 2008; Jaine et al., 2012; Barr & Abelson 2019; Setyawan et al., 2020; Harris et al., 2020; 

Armstrong et al., 2021; Harris and Stevens 2021; Palacios et al., 2021). These data can help 

conservation and management efforts to correctly identify habitat drivers of aggregations and 

therefore implement more informed spatial-temporal measures for conservation. 

Social dynamics can also be studied with acoustic telemetry (e.g., Vemco Positioning System), 

allowing for the calculation of near-continuous fine-scale animal locations with overlapping receiver 
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arrays (Espinoza et al., 2011) to elucidate association patterns among tagged individuals (Armansin 

et al., 2016). Crittercams with sensors (Stewart et al., 2019) or animal-borne acoustic proximity 

receivers, where the individual tagged can transmit their own code and store signals from other tagged 

animals (Holland et al., 2009) are other options to quantify interactions between individuals. However, 

this method is limited by the need to recover the instruments from animal (Stewart et al., 2019) via 

passive release or the recapture of the tagged animal to retrieve the data (Guttridge et al., 2010).  

 

5. Conclusions 

Aggregative behavior facilitates multiple life history functions, providing benefits for the intake of food 

as well as for the survival of the species through mating and protection of early life stages. However, 

aggregations may also exacerbate the risk of major impacts to mobulid populations if threats occur at 

key aggregations sites. Similar to fisheries targeting spawning aggregations of bony fishes, targeted 

fisheries or bycatch at mobulid courtship and mating aggregation sites can affect the viability of the 

next cohort. 

With emerging technologies, the study of aggregations and social behaviors are becoming more 

accessible and affordable. However, the nature and location of mobulid aggregation sites are 

sometimes difficult to identify because of a lack of consistency in which the term ‘aggregation’ is used. 

Often, aggregation sites are described without giving information on the details of the behavior and 

the number of individuals present rather, they are described loosely as ‘an area where mobulids are 

frequently sighted.’ This terminology makes it difficult to assess the importance of the site for 

aggregation behavior.  

While aggregative behavior is a characteristic of all mobulid species, smaller species often form larger 

aggregations, potentially leading to higher vulnerability given heightened exposure to anthropogenic 

risks associated with aggregations. Paradoxically, these smaller devil rays are less studied and enjoy 

less legal protection in comparison to the larger manta rays. Therefore, it is important than in future 

research and studies the pygmy devil rays are prioritized. Otherwise, the partial disappearance of 

pygmy devil rays from some of their range is likely to occur, as has already occurred in the eastern 

Atlantic for M. hypostoma cf. rochebrunei. Furthermore, many of the pygmy devil rays are still not 

protected from fisheries in most parts of their range, which exacerbates the urgency to study their 

aggregation sites and behaviors. 

 
Supplementary material  
 
Table 1 (Supplementary material). Summary of published literature on mobulid aggregations, where 
the numbers of individuals of manta or devil rays aggregating at a given time were stated. (NS) Not 
stated in the study.
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Species Region Drivers of 

aggregations 

Maturity 

Stage 

Seasonality Influential 

Environmental 

factors 

Max 

aggregation 

size 

Research 

methods and 

technologies 

Reference 

M. birostris  Venezuela 

(Caribbean) 

Feeding  NS May, 

August-

September 

Upwellings systems 

and trade winds 

50 Aerial survey Notarbartolo-di-

Sciara and Hillyer 

1989 

Japan 

(Ogasawara 

Islands) 

Courtship and 

mating 

Adults July-August NS 4 Underwater 

video with 

SCUBA 

Yano et al., 1999 

New Zealand 

(Mokohinau 

Island) 

Feeding Adults April NS 2 Aerial survey Duffy and Abbott 

2003 

Suriname Unknown Adults May NS 2 Sightings from 

boat 

De-Boer et al., 2015 

Brazil 

(Paranaguá 

estuary) 

Predator 

avoidance  

NS October-

May 

High water 

temperatures  

3 TEK/ Land 

surveys 

Medeiros et al., 2015 

USA (Flower 

Garden Bank) 

Feeding, 

predator 

avoidance 

and thermal 

refugia 

Juveniles/

Subadults/ 

Adults 

Year-round NS 5 Underwater 

video and scuba 

sightings 

Childs 2001, Stewart 

et al., 2018b 

Mexico 

(Caribbean) 

Feeding  NS July-

September 

High productivity  10 Underwater 

video transects 

by free divers/ 

Environmental 

factors 

monitoring 

Hacohen-Domené et 

al., 2017 

Maldives Courtship and 

mating 

Adults NS NS 9 Photo-ID/ 

Underwater 

video transects 

by divers 

Stevens et al., 2018b 

Ecuador 

(Galapagos) 

Courtship and 

mating 

Adults NS NS 2 Underwater 

video with 

SCUBA 

Brasil 

(Fernando de 

Noronha 

Archipelago) 

Feeding Juveniles Year-round NS 3 Photo-ID/ 

Citizen science 

Bucair et al., 2021 
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Ecuador (Isla 

de La Plata) 

Feeding and 

courtship and 

mating  

Adults May-

October 

Low water 

temperature and 

high chl a 

concentration 

60 Photo-ID/ 

Underwater 

video with 

SCUBA 

Stevens et al., 2018b; 

Harty et al., 2022 

Mexico (Bahía 

de Banderas) 

Feeding and 

thermal 

refugia 

NS  April, 

September-

December 

La Niña phase, 

upwelling systems, 

low water 

temperature, high 

densities 

zooplankton and 

intermediate moon 

phases 

20 Photo-ID/ 

Underwater 

video transects 

by free divers/ 

Environmental 

factors 

monitoring 

Fonseca-Ponce et al., 

2022 

M. alfredi Mozambique Courtship and 

mating 

Adults October-

January 

NS 14 Photo-ID/ 

Underwater 

video transects 

by divers 

Marshall and Bennett 

2010 

Maldives Feeding and 

cleaning 

NS December-

April 

(Western 

side); May-

November 

(Eastern 

side) 

Monsoon currents 

and upwelling 

systems  

100 TEK/ 

Environmental 

factors 

monitoring 

Anderson et al., 2011 

USA (Maui, 

Hawaii) 

Courtship and 

mating 

Adults Year-round NS 18 Photo-ID/ Laser 

photogrammetry 

Deakos 2012 

Australia 

(Lady Elliot 

Island) 

Feeding and 

cleaning 

NS May-August Slower wind 

speeds, high 

productivity, and 

new and full moon 

80 Underwater 

video transects 

by divers/ 

Environmental 

factors 

monitoring 

Jaine et al., 2012 

Guam (Tumon 

Bay)  

Feeding NS January-

June 

Spawning 

aggregations of 

Acanthurus 

12 Underwater 

video transects 

by divers 

Hartup et al., 2013 
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Australia 

(Lady Elliot 

Island) 

Feeding  NS January-

February 

River outflow, eddy 

activity, upwelling, 

convergent fronts 

and tides 

150 Aerial survey/ 

Environmental 

factors 

monitoring 

Weeks et al., 2015 

Indonesia 

(Alor and 

Pantar Islands) 

Unknown Adults NS NS 15 TEK Lewis et al., 2015 

Maldives 

(Hanifaru Bay) 

Feeding  NS June-

November 

Monsoon winds 

and chlorophyll-a 

concentration 

150 Photo-ID/ 

Underwater 

video transects 

by divers 

Stevens 2016 

Australia 

(Coral Sea) 

Courtship and 

mating 

Adults August NS 4 Underwater 

video with 

SCUBA 

Stevens et al., 2018b 

French 

Polynesia 

(Rangiroa) 

Courtship and 

mating 

Adults NS NS 3 Underwater 

video with 

SCUBA 

French 

Polynesia 

(Bora Bora) 

Courtship and 

mating 

Adults NS NS 2 Underwater 

video with 

SCUBA 

Indonesia 

(Nusa Penida) 

Courtship and 

mating 

Adults September NS 7 Underwater 

video with 

SCUBA 

USA (Hawaii, 

Hawaii) 

Courtship and 

mating 

Adults March NS 2 Underwater 

video with 

SCUBA 

USA (Maui) Courtship and 

mating 

Adults NS NS 22 Underwater 

video with 

SCUBA 

Maldives Courtship and 

mating 

Adults NS NS 27 Photo-ID/ 

Underwater 

video transects 

by divers 

Indonesia 

(Raja Ampat) 

Feeding and 

cleaning 

NS NS  NS 67 Photo-ID/ 

Underwater 

video transects 

by divers 

Perryman et al., 2019 
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Indonesia 

(Nusa Penida, 

Manta Bay) 

Feeding and 

predator 

avoidance  

Juveniles/ 

Subadults/ 

Adults 

Year-round High productivity  8 Photo-ID/ 

Citizen science 

Germanov et al., 

2019 

Indonesia 

(Nusa Penida, 

Manta Point) 

Courtship and 

mating 

Adults Year-round High productivity  14 

Chagos 

Archipelago 

(Egmont 

Atoll) 

Feeding  Juveniles/

Subadults/ 

Adults 

March Cold water bores, 

tide and high 

zooplankton 

biomass. 

40 Acoustic 

tracking/ 

Underwater 

video transects 

by divers/ 

Environmental 

factors 

monitoring 

Harris et al., 2021 

Maldives 

(Hanifaru Bay) 

Feeding  NS August High zooplankton 

biomass and tide. 

250 Underwater 

video transects 

by divers/ 

Environmental 

factors 

monitoring 

Armstrong et al., 

2021 

M. 

tarapacana 

Venezuela 

(Caribbean) 

Unknown NS July Upwellings systems 

and trade winds 

9 Aerial survey Notarbartolo-di-

Sciara and Hillyer 

1989 

Portugal 

(Azores) 

Feeding and 

courtship and 

mating  

Adults/ 

Pregnant 

June-

September 

Temperature range 

22.5 - 24.5°C 

16 Photo-ID/ 

Citizen science 

Sobral 2013 

Brazil (Saint 

Peter and Saint 

Paul 

Archipelago) 

Courtship and 

mating 

Subadults/ 

Adults 

January-

June 

High productivity 

and high-water 

temperatures  

24 Photo-ID/ 

Underwater 

video transects 

by free divers 

Mendonça et al., 

2020 

Portugal 

(Azores) 

Feeding  Adults June-August NA 50  Underwater 

video transects 

by divers 

Solleliet-Ferreira et 

al., 2020 

M. mobular Italy (Strait of 

Messina) 

Feeding Adults May-August NS 6 Citizen science/ 

Fishery-

dependent data 

Celona 2004 
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Palestine 

(Gaza strip) 

Unknown Adult 

Males 

February-

April 

NS 35 TEK/ Fishery-

dependent data 

Abudaya et al., 2017 

Italy  Unknown NS April-

August 

High productivity 18 Aerial survey Notarbartolo-di-

Sciara et al., 2015 

New Zealand 

(Southwest 

Pacific Ocean) 

Courtship and 

mating 

Adults March NS 5 Underwater 

video transects 

by free divers 

Duffy and Tindale, 

2018 

Peru  Unknown NS December-

January and 

March 

Upwelling systems 162 Fishery-

dependent data/ 

Environmental 

factors 

monitoring 

Lezama-Ochoa et al., 

2019a 

M. 

thurstoni 

Ecuador 

(Galapagos) 

Unknown NS December - 

January 

Upwelling systems 220 Fishery-

dependent data/ 

Environmental 

factors 

monitoring 

Brazil 

(Archipelago 

of Saint Peter 

and Saint Paul) 

Courtship and 

mating 

Adult May NS 4 Aerial survey 

(Drone) 

McCallister et al., 

2020 

M. 

eregoodoo 

 Australia 

(Eastern coast) 

Unknown Adults April High water 

temperatures 

6 Fishery-

dependent data  

Broadhurst et al., 

2018 

Indo-Pacific Unknown NS NS NS 30 Fishery-

dependent data / 

Underwater 

video transects 

by divers 

Notarbartolo-di-

Sciara et al., 2019 

M. 

munkiana 

Mexico 

(Espiritu Santo 

Archipelago) 

Unknown Juveniles/ 

Adults 

March-

September 

NS 84 Fishery-

dependent data 

Del-Valle-González-

González 2018 

Mexico 

(Espiritu Santo 

Archipelago) 

Predator 

avoidance 

and thermal 

refugia 

Neonate/ 

Juveniles 

August- 

May 

High water 

temperatures and 

high zooplankton 

biomass 

19 Acoustic 

tracking/ 

Environmental 

factors 

monitoring 

Palacios et al., 2021 



 

37 

Costa Rica 

(Punta 

Descartes) 

Feeding/ 

Predator 

avoidance 

Juveniles June-

September 

High mysid 

biomass and 

breaking zone of 

the low tide waves 

10 Land surveys/ 

Aerial surveys/ 

Environmental 

factors 

monitoring 

Porsiel et al., 2021 

M. 

hypostoma 

USA (Flower 

Garden Bank) 

Feeding/ 

Courtship and 

mating 

Subadults/ 

Adults 

June-August NS 50 Video and scuba 

sightings 

Childs 2001 

M. kuhlii Mozambique 

(Bazaruto 

Archipelago 

National Park) 

Cleaning  NS NS Abundance of the 

cleaner fish, 

topography, and 

substrate cover 

6 Underwater 

video transects 

by divers 

Murie and Marshall 

2016 

Malaysia 

(Pulau Si 

Amil, Sabah) 

Unknown NS May-July NS 100  Underwater 

video transects 

by divers 

McCann et al., 2021 

Mobulid 

spp. 

Peru (Zorritos) Unknown NS October-

January 

High productivity 

and high-water 

temperatures  

>60 Fishery-

dependent data 

Alfaro-Cordova et 

al., 2017 
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1.Introduction 

Nursery areas have been shown to be important for many elasmobranch species1,2. These discrete 

areas have biotic and abiotic features that can be important for pupping and for enhancing the survival 

of neonates, and juveniles2. For an area to be considered an elasmobranch nursery, it must follow at 

least three criteria: 1) neonates, and juveniles are more commonly encountered within the area 

compared to adjacent areas, 2) individuals tend to remain or return to the area over weeks or months, 

and 3) the area is used in a similar manner repeatedly across years3,4.  

While many studies have identified the importance of nursery areas for sharks3,5,6 little is known about 

nursery areas for batoids7,8,9. Indeed, only three important juvenile habitats for manta rays have been 

identified in the Gulf of Mexico9,10, in Florida11 (Mobula birostris and Mobula. cf. birostris for both 

areas), and in Indonesia12 (Mobula alfredi). In addition, a potential pupping ground for Mobula mobular 

in the Northern Gulf of California13, has been suggested, but more research is needed to confirm.  

Mobulids (manta and devil rays) are planktivorous filter feeders with vulnerable life histories14,15, that 

include the lowest fecundity of all elasmobranchs (one pup per litter)16,17, and delayed, aplacental 

viviparous matrotrophic reproduction cycles of 1–3 years18,19,20,21. Such low reproductive rates make 

mobulids extremely vulnerable to anthropogenic impacts including targeted small-scale fisheries18,22,23 

and bycatch in small- and large-scale fisheries22,24. As a result, all mobulid species are IUCN Red list, 

Endangered or Vulnerable25, with all species experiencing population declines26,27.  

Pygmy devil rays (5 of the 10 mobulid species)28, include the smaller species reaching < 1.3 m disc 

width as adults with more restricted distribution than the larger mobulid species15. Munk’s pygmy devil 

ray (Mobula munkiana) is endemic to the Eastern Pacific, found in neritic and coastal habitats that 
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extend from the Gulf of California, Mexico to Peru29. In the Gulf of California, M. munkiana feed 

predominantly upon Mysidacea spp. with the euphausiid, Nyctiphanes simplex, as a second prey 

item18,30. 

While size at birth remains unknown, estimations and comparisons with other pygmy devils rays 

indicate that disc width could range from 35 cm18 to 42.3 cm31, and reach up to 112 cm as an adult32. 

Mobula munkiana is particularly known for its social behavior18, often congregating in large 

aggregations of thousands of individuals, presumedly for mating purposes15. M. munkiana is currently 

classified as “Vulnerable” on the IUCN Red List of Threatened Species29. While the species is 

nationally protected in Mexican waters under the NOM-029-PESC-2006 and NOM-059-SEMARNAT-

2010 regulations, illegal targeted fishing still exists in several areas in the Gulf of California33.  

When M. munkiana was first described in the Southern Gulf of California, segregation by size was 

described18,34,35, leading to the potential for differential habitat use between juvenile and adult stages. 

Since 2013, local fishermen and tour operators in the Southern Gulf of California, have known of a 

well-established aggregation of M. munkiana in Ensenada Grande, a shallow bay with sandy bottom 

seafloor, located on the northwest side of the Espiritu Santo Archipelago (Fig. 1). These anecdotal 

observations prompted us to examine whether pygmy mobulid rays utilize nursery areas for mating, 

pupping, and foraging of juveniles. 

Here we report the reproductive seasons (mating and parturition) for adults, and residency linked to 

environmental factors of early life stages of M. munkiana in a shallow bay at the Espiritu Santo 

Archipelago, Mexico. We used a combination of nonlethal methodologies including traditional tagging, 

passive acoustic telemetry, and environmental monitoring (zooplankton biovolume and water 

temperature) to examine the spatial use and foraging ecology of early life history stages of M. 

munkiana and to determine if M. munkiana utilize the shallow bay as a nursery area. 

 

2.Methods 

2.1 Study Area 

The Espiritu Santo Archipelago is located in the south west region of the Gulf of California and is the 

eastern limit of La Paz Bay (Fig.1). The Archipelago was declared a Marine National Park in 2007, 

only allowing artisanal fisheries and ecotourism activities in some restricted areas. The bathymetry of 

the eastern Espiritu Santo Archipelago is characterized by steep terracing, with water over 100 m 

occurring just a few meters from the shore, particularly off the eastern side of the archipelago. Our 

main study area at Ensenada Grande is located on the western coast of the Espiritu Santo Archipelago 

and is comprised of several sandy bottom embayment’s (<40 m depth) (Fig. 1c). Productivity of the 

Espiritu Santo Archipelago is influenced by the monsoonal wind pattern of the Gulf of California with 

northwesterly winds that cause strong upwelling events during the cold season (December to May), 

with primary production rates ranging between 1.16–1.91 g Cm2 d-151. Strong thermal stratification 
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occurs during the warm season (June to November), when upwelling is weak along the east coast of 

Baja California peninsula52 with low primary production rates (0.39 to 0.49 g C m2 d-1)51. 

 

 

Figure 1. (a) Mexican Pacific and Baja California Peninsula. The yellow square located on the 
southwestern portion of Gulf of California outlines the location of (b) La Paz Bay and the surrounding 
islands of San Jose (SJI), Cerralvo (CI), and the Espiritu Santo Archipelago (ESA) outlined in yellow 
dashed square. The receiver locations (n = 21) are indicated with black–white dots. (c) Mobula 
munkiana early life stage individuals aggregate in the shallow bay of Ensenada Grande outlined with 
a yellow square. The map was created using Surface Mapping System (Golden Software, Inc., 1993–
2012, https ://www.golde nsoft ware.com/produ cts/surfe r) and the coastline data was extracted from 
GEODAS-NG (National Geophysical Data Center, 2000). 
 

2.2 Ethics statement 

The methods were approved under the research permit PPF/DGOPA-133/17 issued by Comisión 

Nacional de Acuacultura y Pesca with authorization of Comisión Nacional de Áreas Naturales 

Protegidas. The tagging and surgical procedures followed the Institutional Animal Care and Use 

Committee of the University of California, Davis (IACUC, Protocol No. 16022).  

2.3 Data Collection 

 Mobula munkiana, were caught between August 2017 and June 2018 at Ensenada Grande during 5 

capture trips. Individuals were captured with encircling surface cotton twine nets 150 m long, 15 m 

deep, with 25 cm mesh. Captured individuals were maintained in the water, allowing water to pass 

over their gills to reduce stress levels before transferring them into a holding tank onboard the boat. 



 

57 

Individuals were sexed, measured (total length and disc width), and evaluated for mating scars on 

pectoral fins, cloacal state (females) and development state of claspers (males). Release was typically 

completed < 5 min after capture and all devil rays were released in good condition. 

2.4 Life stages description 

Mobula munkiana maturity was classified in four states, according to estimates of their disc width size 

at maturity as either neonate (< 97 cm female or 98 cm male disc width with umbilical scars present), 

juvenile (< 97 cm female or 98 cm male disc width with no umbilical scar) and adult (> 97 cm female 

or 98 cm male disc width)32. Adult females with a noticeably distended abdominal region on both the 

dorsal and ventral surfaces were classified as likely pregnant females20. 

2.5 Conventional Tagging 

Individuals were tagged with conventional fish tags (FLOY TAG & Mfg., Inc.) in the dorsal part of the 

pectoral fin with a special applier for future identification purposes.  

The data collected from captures and conventional tagging were used to characterize the overall size 

and demographic composition of the population captured in Ensenada Grande. A X2 test was used to 

test for skewed sex ratios in captured juveniles and neonates in Ensenada Grande. 

Size data set did not meet the normality assumptions according to the Shapiro-Wilk test (n = 95, W = 

0.92567, P= 4.446e-05), therefore a nonparametric Wilcoxon test was performed to compare disc 

width and sex distribution. Capture locations were plotted using Surface Mapping System (Golden 

Software, Inc., 1993-2012, https://www.goldensoftware.com/products/surfer) and the coastline data 

was extracted from GEODAS-NG (National Geophysical Data Center, 2000).  

2.6 Acoustic Telemetry 

Mobula munkiana were fitted with internal acoustic transmitters (Vemco Ltd. V13; n = 7) with an 

expected battery life of 991 days in August 2017 at Ensenada Grande. Transmitters were coated with 

a beeswax/paraffin wax mixture and internally placed by surgically inserting them into a 3 cm incision 

in the abdominal cavity. The incision was closed with synthetic surgical sutures. Transmitters operated 

at 69 kHz and were coded to pulse randomly once every 40–80 s allowing the simultaneous monitoring 

of multiple individuals without continuous signal overlap. Acoustic receivers (model VR2w and VR2Tx 

Vemco Ltd; n = 6) were moored at depths between 5–26 m at locations previously known to be 

frequented by Munk’s pygmy devil rays within the Espiritu Santo Archipelago as part of a larger 

receiver array (n = 21 receivers) installed within La Paz Bay Cerralvo Island and San Jose Island, 

providing a much greater coverage of our main Ensenada Grande study site  and adjacent areas 

(Fig.1). We tested acoustic array range and found a maximum detection range of 350 m for the 

receivers at the Espiritu Santo Archipelago. Receivers recorded the transmitter code, time, and date 

of tagged M. munkiana that swam within the detection range of the receivers. Movements of neonates 

and juveniles M. munkiana were monitored on the array between August 2017–May 2019.  
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Receiver data in this network were downloaded and batteries are changed at least annually, and data 

were processed using the VUE Software (Vemco Inc., https://support.vemco.com/s/downloads).  We 

filtered the data to include only detections with two or more consecutive detections as a means to 

avoid false positive detections that could arise from background noise51.  

The distribution and residency of detections throughout the receiver array were visualized and 

analyzed using the package “VTrack” ( https://CRAN.R-project.org/package=VTrack) in R 

(https://www.r-project.org/). A residency index54 for each individual captured in the Espiritu Santo 

Archipelago was calculated with the formula (1).  

(1) 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (%)  =  
𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑦𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑜.  𝑜𝑓 𝑑𝑎𝑦𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑙𝑎𝑠𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
 

The sequential series of detections over time throughout the receiver array from the first detection to 

the last is referred to as the “track” for each individual.  

Daily presence data were analyzed to determine the number of consecutive days that an individual 

was resident (continuous presence) at a location. Since the acoustic data set did not meet the 

normality assumptions according to the Shapiro-Wilk test (n = 7; W = 0.78852, P= 0.03148) a 

nonparametric Spearman correlation and Wilcoxon tests were carried out to determine whether 

residency indices differed significantly with disc width, sex, and maturity stage of tagged M. munkiana. 

Habitat preference was studied by grouping the acoustic receivers of Ensenada Grande (n = 2) as 

inside-bay receivers and the rest of the Espiritu Santo Archipelago acoustic array (n = 4) as offshore 

receivers. A Wilcoxon test was used to compare the residency index found inside-bay receivers vs. 

offshore. Differences in residency between seasons was examined by comparing monthly residences 

of warm months (June to November) against cold months (December to May) using a Wilcoxon test. 

To quantify diel changes in the M. munkiana presence of Ensenada Grande we produced circular 

plots of the number of detections during daytime (0600–1900 h) vs. nighttime (1900–0600 h); limits of 

diel times were determined using defined cutoffs for dawn and dusk for the Ensenada Grande location. 

We used Rao’s test to analyze the uniformity of the detections for the receivers inside Ensenada 

Grande. We calculated the minimum linear dispersal distance for each individual defined as the 

distance between the two furthest receivers at which an individual was ever detected using Surface 

Mapping System (Golden Software, Inc., 1993–2012, 

https://www.goldensoftware.com/products/surfer)  

2.7 Environmental factors 

Water temperature data was collected every 2 hours by a temperature logger (Onset HOBO Water 

Temperature, Pendant 64k) deployed at Ensenada Grande at 13 m depth during 9 months from 

August 2017 to April 2018. Temperature records were averaged over each day of the study period 

and aligned with the acoustic detection data to examine temperature effects on mobulid 

presence/absence.  

https://support.vemco.com/s/downloads
https://cran.r-project.org/package=VTrack
https://www.r-project.org/
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Zooplankton was sampled during day and night at three locations inside Ensenada Grande (Fig.5a). 

A total of 125 zooplankton samples were collected from August 2017 to June 2018 (25 samples per 

monitored month). Zooplankton was collected during a three minute oblique tow with a 60 cm mouth 

diameter zooplankton net (300 μm mesh), equipped with a calibrated flow meter (G.O. 2030R) 

mounted in the mouth of the net to estimate the filtered seawater volume55. Samples were preserved 

with 4% formalin. Zooplankton biovolume (mL 100 m-3) was estimated for each sample using the 

displacement volume method56.  

Temperature (n = 3466 W = 0.91839, P= 1.848e-05) and zooplankton biovolume (n=128, W = 

0.75869, P = 3.424e-11) data sets did not meet the normality assumptions according to the Shapiro-

Wilk test respectively, therefore nonparametric Wilcoxon tests were used to compare seawater 

temperatures among seasons and zooplankton biovolume between day/night and between warm/cold 

seasons. We tested the correlation between the seawater temperature and zooplankton biovolume 

with the mean monthly residency index at Ensenada Grande using Spearman correlations. Kruskal 

Wallis non-parametric tests were used to compare the zooplankton biovolume among months and 

sampling stations and post-hoc Dunn test were used to determine which months and sampling 

stations significantly differed.  

 

3.Results 

3.1 Conventional Tagging 

A total of 95 Munk’s pygmy devil rays were captured at Ensenada Grande from August 2017 to June 

2018 during five capture periods (Supplementary Information Table S1). Mobula munkiana catches 

and life stage varied seasonally, with greater captures occurring during late summer and fall than 

during winter, spring, and early summer (Fig. 2).  Disc width was not normally distributed (W94 = 0.925, 

P = 0.0004), and we found no significant difference in size by sex (W93 = 905, p = 0.18). Juveniles (65 

%, n = 62) and neonates (19 %, n = 18) dominated the sampled population with a 1:1 sex ratio (X2 = 

0.05, P = 0.8) with 39 females and 41 males.  

Neonates (n = 18) were identified by the presence of the umbilical scar on the ventral side below the 

gills (Supplementary Information Figure S1). Neonate size ranged from 49.5–56 cm disc width and 

were only captured inside Ensenada Grande during August, at depths between 2–5 m. Juveniles (n = 

62) ranged from 49–85 cm disc width and were captured during all sampling months at Ensenada 

Grande. Neonates and juveniles were only caught with individuals of the same life stage, indicating 

size segregation of the schools. All neonate and juvenile males had undeveloped claspers without 

calcification or rotation (Supplementary Information Figure S1), while neonate and juvenile females 

showed no evidence of mating scars and the state of the cloaca was not distended. 

Adults (15%, n = 14) and pregnant females (1%, n = 1) were only captured during spring and early 

summer (April and June) at >15 m depth in Ensenada Grande. The adults (n = 4) captured in April 
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2018 were females with swollen distended cloaca evidenced with a reddish coloration indicating 

possible recent mating or parturition (Supplementary Information Figure S1) as it has been interpreted 

in other elasmobranch species36,37. 

 During June 2018, we captured a group of adults composed of one female and four males displaying 

courtship behavior at the surface (initiation and endurance) as described for Mobula alfredi and M. 

birostris38. All four males had developed claspers with sperm. Courtship behavior was also observed 

during April 2018, but those animals were not captured. A female in an advanced state of pregnancy 

was captured at Ensenada Grande during June 2018 showing distended abdominal region on both 

the dorsal and ventral surface (Supplementary Information Figure S1). Pregnancy was confirmed on 

another individual with the same characteristics captured at Espiritu Santo Archipelago in April 2018 

using ultrasound techniques, with a single and well-developed term-embryo present (Ramírez-Macías 

unpub. data). This corroborated the estimation of the litter size of a single pup for M. munkiana39 and 

other mobulid species14,40.  

During this study we had seven recaptures (6.23%) of six individuals, four juveniles and two neonates. 

The straight-line capture/recapture distance for all recaptured devil rays was between 0.1 to 0.5 km, 

with recapture durations ranging from one day to eight months from initial capture.   

 

 

Figure 2. (a) Capture locations of M. munkiana between August 2017 and June 2018 at Ensenada 
Grande. Circle size indicates the number of individuals captured at each location by life stage. 
Numbers indicate the bathymetric lines. (b) Number of M. munkiana captured at Ensenada Grande 
per month and life stage following the same color code. 
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Figure 3. (a) Mobula munkiana detection map between August 2017 and May 2019 at La Paz Bay and the surrounding 
islands of San Jose (SJI), Cerralvo (CI), and (b) the Espiritu Santo Archipelago (ESA). The proportion (%) is indicated by 
circle size and color for each receiver described in the legend. 

 
 

3.2 Acoustic Telemetry 

3.2.1 Detection summary 

All seven acoustic tags deployed on M. munkiana (four neonates and three juveniles) (Table 1) were 

recorded by at least two receivers around the Espiritu Santo Archipelago. We recorded 38,275 

detections for all individuals at five of the six receivers placed around Espiritu Santo Archipelago 

during the monitoring period (643 days) and no other detections were recorded on the rest of the 

acoustic array (n = 15) (La Paz Bay, Isla San Jose and Isla Cerralvo) (Fig. 3a). 

Females accounted for 64.5% of detections (two neonates with 63.9% and two juveniles with 0.6% of 

total detections), while males accounted for 35.5% of detections (two neonates with 27% and one 

juvenile with 8.5% of total detections). 

3.2.2 Residency 

Overall residency indices for Espiritu Santo Archipelago-tagged individuals ranged from 1% to 99% 

(27 ± 33%, mean ± SD).  The tracking duration for individual M. munkiana ranged from 151 to 631 
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days (435 ± 195 days, mean ± SD). Detections on consecutive days were found in receivers both 

within (maximum 145 consecutive days) and outside Ensenada Grande (maximum of three 

consecutive days). Neonates were present at Ensenada Grande during 26 to 145 successive days 

while juveniles were present from 1 to 17 successive days. There were no significant differences in 

the residency index between sexes (W6 = 4, P = 0.63), maturity stages (W6 = 2, P = 0.23) or sizes (S 

= 88.59, P = 0.17). 

3.2.3 Habitat preference and spatial movements 

Areas of high activity as determined by the number of detections of tagged Munk’s pygmy devil rays 

were in coastal waters inside Ensenada Grande where 98.6 % of the validated receiver detections 

were registered (Fig.3b). The other receivers around the Espiritu Santo Archipelago were categorized 

as offshore and accounted for just 1.4% of the detections, while no detections were registered in the 

remainder of the receiver array (Fig.3a).   

 

Table 1. Summary of acoustic tag deployments on 4 neonates (1–4 ID) and 3 juveniles (5–7 ID) of M. 
munkiana at Ensenada Grande (EG), Espiritu Santo Archipelago in 2017. Dates are given as d/mo/yr. 
DW: disc width; no. det: number of detections; det: detections. 
 

Mobula 

ID 

Se

x 

DW  

(cm) 

Deployment 

date 

Last 

detection 

Total 

no. det 

Total 

track 

days 

Total det. 

days 

Residency 

index EG 

(%) 

Max no. of 

consecutive 

days det at 

EG 

1 F 50 02/08/17 08/01/18 15432 151 150 99 145 

2 M 50 02/08/17 21/10/18 4777 437 50 11 46 

3 M 52 02/08/17 09/01/19 5582 498 139 26 26 

4 F 55 02/08/17 16/04/19 9011 614 129 20 70 

5 F 72 01/08/17 22/03/19 208 537 16 1 1 

6 M 72 01/08/17 29/04/19 3248 631 173 26 17 

7 F 75 02/08/17 01/03/18 27 183 9 4 3 

 

As a result, the Ensenada Grande receivers had a statistically greater residency index compared to 

other receivers placed around the Espiritu Santo Archipelago (W13 = 44, P =0.01). Individuals moved 

throughout the Espiritu Santo Archipelago with a travelling minimum linear dispersal distance of 18.5 

± 7.6 km (mean ± SD) and a maximum of 21.4 km based on detections around the archipelago. One 

single individual (neonate, 50 cm disc width) was never detected outside of Ensenada Grande, and 

had a minimum linear dispersal distance of only 1.22 km.  

3.2.4 Seasonality 
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Acoustic detections occurred at the Espiritu Santo Archipelago throughout the year for most devil rays, 

with no statistically significant differences in residency index between warm and cold seasons (W53 = 

249, P = 0.07). The largest residency indices included September, October, November (warm 

season), and December (start of cold season) 2017 (Fig. 4). Detection rates for all tagged neonates 

and juveniles decreased during March and April when adults tend to be more frequent at Ensenada 

Grande and Espiritu Santo Archipelago. Larger juveniles also appear to recruit into the adult 

population sometime between April and June, supported by our field observation of a tagged 

(conventional tag) juvenile (≈ 85 cm disc width) swimming in the deeper part of Ensenada Grande 

(>20 m) as part of a large school of M. munkiana adults.  

3.2.5 Diel change 

All detections at Ensenada Grande showed that the spatial distribution of Munk’s pygmy devil rays 

varied by time of the day (Fig. 5a). Tagged M. munkiana were detected by the shallow receiver, RS1 

(5 m depth) during all hours, but detections were significantly more frequent during daytime (U = 359.6, 

P < 0.05). We found three peaks in detections: between 0400–0500 h (nighttime), 0700–0800 h 

(daytime) and 1600–1700 h (daytime). We also found significantly greater detections during the 

daytime at the receiver placed in a deeper area within Ensenada Grande, RS2 (26 m depth) (U = 

359.39, P < 0.05) with almost no detections during nighttime when M. munkiana appear to move to 

shallower areas. 

3.3 Environmental Factors 

3.3.1 Temperature 

Sea water temperature from Ensenada Grande was recorded from August 2017 until April 2018. 

Temperature values followed seasonal patterns previously described41 with maximum temperatures 

from June to November (24.1–29.6 °C) and minimum values from December to May (18.1–26.5 °C). 

We found a statistically significant correlation between water temperature and the mean monthly 

residency index of tagged M. munkiana at Ensenada Grande (S = 2.496e+09, P < 0.0001, rho = 0.643). 

Detections of tagged individuals were consistently greater (up to 145 days of consecutive detections) 

between August to April of the first year of the study (2017–2018) when water temperature ranged 

from 18.8–29.6°C, suggesting that they may range less widely during those months of the year. About 

77 % of the detections in Ensenada Grande occurred when water temperature ranged 25.5–29.6 °C 

(total range 18.1 to 29.6 °C) (Fig. 4). 
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Figure 4. Mobula munkiana (n = 7) detections recorded at Espiritu Santo Archipelago between August 
2017 and May 2019. Left axis specified code of the animal tag–disc width in centimeters–Sex (F: 
female; M: male). Ensenada Grande receivers are indicated in red (Inshore) and the rest of the Espiritu 
Santo Archipelago array is in orange (Offshore). Black line represents the temperature at Ensenada 
Grande from August 2017 to April 2018. Months of mating and pupping season are indicated in yellow. 
 

3.3.2 Zooplankton 

Zooplankton was primarily composed of major taxonomic groups of holoplankton (Copepoda, 

Cladocera, Euphausiids, Chaetognatha, Mysidacea and Decapoda).  

Zooplankton biovolume was significantly greater during the night compared to day (W126 = 1175, P = 

0.0001549) (Fig. 5b) across all sampling months, with a peak value of 36.27 ± 8.25 mL 100 m−3 (mean 

± SEM) during nighttime samples in December. We found a significantly greater mean zooplankton 

biovolume during the cold season (December to May) (W126 = 2454.5, P = 0.027) as well as between 

months (Kruskal-Wallis X2 = 23.1, df = 5, p = 0.0003), with maximum zooplankton biovolume values 

observed during December (31.12 ± 4.98 mL 100 m−3, mean ± SEM) and lowest values in June (10.91 

± 1.64 mL 100 m−3, mean ± SEM). We also found significant differences of zooplankton biovolume 

across our three sampling stations inside Ensenada Grande (Kruskal-Wallis X2= 13.478, df = 2, P= 

0.00118; Dunn test, P<0.05). The deeper station had significantly greater nighttime zooplankton 

biovolume (29.13 ± 4.89 mL 100 m−3, mean ± SEM) even though we mainly detected devil rays during 

night hours at the shallower station where mean zooplankton biovolume values were lower (19.55 ± 
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5.08 mL 100 m−3, mean ± SEM). Nevertheless, mean monthly residency index and the zooplankton 

biovolume within Ensenada Grande were significantly positively correlated (S = 221340, P = 5.046e-

05, rho=0.3516104). 

 

Figure 5. (a) Receiver locations (black–white dots: RS1 at 5 m depth and RS2 at 26 m depth) and 
zooplankton sampling stations (orange lines) locations at Ensenada Grande. Circular plots of 
detections per hour of acoustic tagged M. munkiana (n = 7) at each receiver. (b) Zooplankton mean 
biovolume (mL 100 m−3) and standard error at the three sampling stations collected at day and night 
during the study period. 
 

4. Discussion and conclusions 

Our results indicate that M. munkiana utilize nursery areas following the definition proposed for 

elasmobranch nursery areas. The Ensenada Grande bay of the Espiritu Santo Archipelago can be 

considered a nursery area for M. munkiana following the three criteria:   

1. Neonate and juvenile rays are more commonly encountered in Ensenada Grande than in other 

areas due to their high relative abundance, 84 % (n = 80) compared with other studies18,32 where 

proportions for neonates (8.3 %, n = 2) and juveniles (15 %, n = 22) captured were much lower in 

adjacent areas. 

2. Neonates and juveniles exhibited greater residency indices in Ensenada Grande, being detected 

almost daily for up to 7 of the 22 months monitoring period in the bay. Individuals resided inside this 

inshore area from 1 to 145 consecutive days. Moreover, recapture data from traditional tagging 

demonstrated a site fidelity of 2 to 8 months inside Ensenada Grande for neonates and juveniles. 

3. Mobula munkiana neonates and juveniles use Ensenada Grande as a nursery area across multiple 

years. Using anecdotal professional photographs from 2013-2016 (Fig. 6), there is evidence that since 
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ecotourism activities started, sightings of M. munkiana, including juveniles and neonates, are common 

each year from September to December.  

Furthermore, our results provide compelling evidence that M. munkiana use Ensenada Grande as a 

primary nursery area42 due to the presence of neonates and near-term pregnant females, and as a 

secondary nursery area42 due to the presence of juveniles (non-newborn). Therefore, overlapping 

primary and secondary nursery areas for pygmy devil ray species occurs, similar to that observed for 

other elasmobranch species3. 

 

 

Figure 6. Juvenile males M. munkiana with undeveloped claspers (indicated by arrows) at Ensenada Grande during 
recreational dives in (a) November 2013, (b) October 2014 and (c) October 2016. Images copyright: (a),(b) Erick Higuera 
and (c) Luke Inman. 

 

The Southern Gulf of California was previously thought to be a wintering ground for M. munkiana, with 

them disappearing from the region during the warmer season for mating and pupping18. However, we 

instead propose the use of shallow bays adjacent to high secondary production, such as Ensenada 

Grande, as a nursery area where neonates and juveniles likely remain throughout the year. We 

suggest that there are likely other similar, yet undiscovered, nursery areas elsewhere in the Gulf of 

California and Eastern Pacific for this species. We found that early life stage M. munkiana exhibited a 
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higher residency index during warmer water temperatures. This warm temperature residency may 

provide an ecological advantage by accelerating the metabolic rates and thus growth of juveniles and 

thereby reducing the duration of these vulnerable life-history stages3,43. The habitat preference of one 

of its main prey Mysidacea spp., in shallower parts of the neritic zone,44 combined with protection of 

M. munkiana early life stages from large predators, could partially explain the higher detection rate 

recorded at shallower receivers. As a result, there appears to be an advantage for M. munkiana 

neonates and juveniles to behave as residents with a high fidelity to shallow-coastal habitats in 

contrast to adults which range widely in oceanic waters. 

We observed a clear ontogenetic spatio-temporal segregation among neonates, juveniles, and adults 

since these different life stages were all caught during different seasons and areas within Ensenada 

Grande. Size segregation appears to be a common feature for this and other species of mobulids18,45. 

Although sex segregation has been reported in the southern part of the Gulf of California across 

different years for primarily adult M. munkiana18,32,39 , we found a 1:1 sex ratio for neonates and 

juveniles, a typical feature in elasmobranch nursery areas1,46. This suggests that M. munkiana does 

not segregate by sex during early stages but perhaps may initiate sex segregation when they reach 

sexual maturity. 

Reproductive seasonality has been documented for several mobulid species38,40. Based on our 

information we suggest that the  mating and pupping season for M. munkiana begins in April and ends 

in June when water temperatures range between 18–29 °C. Parturition for M. munkiana in La Paz 

Bay has been previously reported between May and June39, however based on our observations of 

near term pregnant females in April and June, females with signs of possible parturition in April, and 

the neonate sizes in August we believe that an extended pupping season is feasible.  

This time frame coincides with a transition around June from the cold season when the euphausiid, 

N. simplex, one of the two main M. munkiana prey items30, attains its maximum abundance and 

reproductive period in the Gulf of California47,48,49. A gestation period of 10 to 12 months has been 

reported for another pygmy devil ray, Mobula eregoodootenkee31 (originally cited as M. kuhlii cf. 

eregoodootenkee) with very similar body size15,22, therefore is very likely that Munk’s pygmy devil ray 

gestation period is the same. Indeed, we observed courtship and pregnancy in the same area and 

time period in La Paz Bay. The timing of parturition and mating are further supported by observations 

of M. alfredi in captivity50 and wild individuals38. 

This is the first description of a pygmy devil ray nursery area and the habitat used by neonates and 

juveniles within it. Individuals of early life stages displayed a high level of residency to the area, more 

correlated to warmer temperatures than to zooplankton abundance. Nursery and mating grounds for 

devil rays are highly likely to overlap in temporal and geographic space. Ultimately, since devil rays 

have the lowest fecundity of all elasmobranchs17, this information may be useful in the design of spatial 

and temporal management strategies to mitigate bycatch in artisanal fishing and to regulate 
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ecotourism activities not only within the Southern Gulf of California, but elsewhere throughout their 

range. In addition, the information presented here will be useful in identifying nursery areas for other 

devil ray species world-wide.  

 

Supplementary material  
 

 
Figure 1 (Supplementary material). (a) Neonate Munk’s devil ray with the umbilical cord scar and 
(b) juvenile male with undeveloped claspers (indicated by arrows) captured at Ensenada Grande in 
August 2017. (c) Adult female with swollen distended cloaca evidenced with a reddish coloration at 
Ensenada Grande in April 2018. (d) Pregnant female showing distended abdominal region at 
Ensenada Grande in June 2018. 
 
Table 1 (Supplementary material).  Summary of traditional tagged individuals (n= 95) at Ensenada 
Grande from August 2017 to June 2018. Capture Date is d/mo/yr; C/R: Capture / Recapture; Sex: M 
(Male) / F (Female); DW: disc width; TL: Total length. Acoustically tagged individuals are shown in 
yellow. 
 

Latitude Longitude 
Capture 

 Date 
Mobula 

ID 
C/R Sex 

Maturity 
Stage 

DW 
(cm) 

TL 
(cm) 

Observations 

24.5616 -110.398 01/08/2017 426 C M Juvenile 81.0 47.5  

24.56 -110.395 01/08/2017 437 C F Juvenile 76.0 45.0  

24.56 -110.395 01/08/2017 355 C M Juvenile 75.0 40.0  

24.56 -110.395 01/08/2017 1 C M Juvenile 72.0 40.0  

24.56 -110.395 01/08/2017 2 C F Juvenile 72.0 40.0  

24.5581 -110.397 02/08/2017 356 C M Neonate 56.0 31.0 Umbilical scars 

24.5581 -110.397 02/08/2017 3 C M Neonate 52.0 29.0 Umbilical scars 

24.5581 -110.397 02/08/2017 408 C F Neonate 52.0 30.0 Umbilical scars 



 

69 

24.5581 -110.397 02/08/2017 446 C M Neonate 52.0 30.0 Umbilical scars 

24.5581 -110.397 02/08/2017 445 C M Neonate 51.0 29.0 Umbilical scars 

24.5581 -110.397 02/08/2017 4 C F Neonate 50.0 29.0 Umbilical scars 

24.5581 -110.397 02/08/2017 5 C M Neonate 50.0 31.0 Umbilical scars 

24.5581 -110.397 02/08/2017 6 C F Neonate 55.0 33.0 Umbilical scars 

24.5581 -110.397 02/08/2017 350 C F Neonate 54.0 32.0 Umbilical scars 

24.5581 -110.397 02/08/2017 429 C F Neonate 51.0 29.0 Umbilical scars 

24.561 -110.395 02/08/2017 438 C M Juvenile 79.0 45.0  

24.561 -110.395 02/08/2017 436 C F Juvenile 78.0 44.0  

24.561 -110.395 02/08/2017 358 C M Juvenile 78.0 46.0  

24.561 -110.395 02/08/2017 435 C M Juvenile 77.5 45.0  

24.561 -110.395 02/08/2017 373 C M Juvenile 77.0 43.0  

24.561 -110.395 02/08/2017 434 C M Juvenile 76.0 43.0  

24.561 -110.395 02/08/2017 7 C F Juvenile 75.0 42.0  

24.561 -110.395 02/08/2017 363 C M Juvenile 75.0 42.0  

24.561 -110.395 02/08/2017 369 C F Juvenile 75.0 41.0  

24.561 -110.395 02/08/2017 449 C F Juvenile 75.0 43.5  

24.561 -110.395 02/08/2017 425 C M Juvenile 74.0 41.0  

24.561 -110.395 02/08/2017 444 C M Juvenile 74.0 38.0  

24.561 -110.395 02/08/2017 443 C M Juvenile 73.0 41.0  

24.561 -110.395 02/08/2017 431 C F Juvenile 72.0 44.0  

24.561 -110.395 02/08/2017 353 C F Juvenile 72.0 43.0  

24.561 -110.395 02/08/2017 428 C M Juvenile 71.5 42.0  

24.561 -110.395 02/08/2017 346 C M Juvenile 70.5 41.0  

24.561 -110.395 02/08/2017 448 C F Juvenile 70.0 40.0  

24.561 -110.395 02/08/2017 370 C F Juvenile 69.0 42.0  

24.5615 -110.395 03/08/2017 366 C F Neonate 55.0 31.0 Umbilical scars 

24.5615 -110.395 03/08/2017 397 C F Neonate 54.0 31.0 Umbilical scars 

24.5615 -110.395 03/08/2017 8 C F Neonate 53.0 29.5 Umbilical scars 

24.5615 -110.395 03/08/2017 439 C F Neonate 50.5 28.5 Umbilical scars 

24.5616 -110.395 03/08/2017 441 C M Neonate 55.0 32.5 Umbilical scars 

24.5616 -110.395 03/08/2017 354 C F Neonate 51.0 28.5 Umbilical scars 

24.5616 -110.395 03/08/2017 351 C F Neonate 50.0 29.5 Umbilical scars 

24.5616 -110.395 03/08/2017 440 C F Neonate 49.5 28.0 Umbilical scars 

24.5619 -110.395 07/10/2017 344 C M Juvenile 82.0 43.0  

24.5619 -110.395 07/10/2017 363 R M Juvenile 78.5 43.0  

24.5619 -110.395 07/10/2017 372 C F Juvenile 78.0 45.0  

24.5619 -110.395 07/10/2017 380 C F Juvenile 77.0 46.0  

24.5619 -110.395 07/10/2017 340 C M Juvenile 74.0 42.0  

24.5619 -110.395 07/10/2017 346 R M Juvenile 74.0 42.0  

24.5619 -110.395 07/10/2017 341 C F Juvenile 70.0 43.0  

24.5619 -110.395 07/10/2017 365 C F Juvenile 57.0 31.5  

24.5619 -110.395 07/10/2017 361 C F Juvenile 51.0 28.0  
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24.5597 -110.396 08/10/2017 393 C F Juvenile 82.0 43.0  

24.5597 -110.396 08/10/2017 387 C M Juvenile 82.0 41.0  

24.5597 -110.396 08/10/2017 377 C M Juvenile 80.0 42.0  

24.5597 -110.396 08/10/2017 378 C M Juvenile 80.0 39.0  

24.5597 -110.396 08/10/2017 399 C M Juvenile 78.0 42.0  

24.5597 -110.396 08/10/2017 367 C M Juvenile 78.0 40.5  

24.5597 -110.396 08/10/2017 359 C M Juvenile 74.0 43.0  

24.5597 -110.396 08/10/2017 391 C F Juvenile 74.0 40.0  

24.5597 -110.396 08/10/2017 385 C M Juvenile 71.0 40.5  

24.5597 -110.396 08/10/2017 364 C F Juvenile 68.0 42.5  

24.5597 -110.396 08/10/2017 371 C M Juvenile 65.0 33.0  

24.5597 -110.396 08/10/2017 422 C M Juvenile 60.0 32.0  

24.5597 -110.396 08/10/2017 441 R M Juvenile 60.0 32.5  

24.5597 -110.396 08/10/2017 361 R F Juvenile 51.0 28.0  

24.5597 -110.396 08/10/2017 392 C M Juvenile 49.0 27.5  

24.5607 -110.396 03/12/2017 392 R M Juvenile 52.5 32.5  

24.5607 -110.396 03/12/2017 441 R M Juvenile 64.0 38.0  

24.5607 -110.396 03/12/2017 405 C M Juvenile 56.0 34.0  

24.5612 -110.397 05/04/2018 403 C F Juvenile 64.0 37.5  

24.5604 -110.406 05/04/2018 33580 C F Adult 110.0 70.0 
Distended cloaca and 

mating scars 

24.5604 -110.406 05/04/2018 33581 C F Adult 110.0 66.5 
Distended cloaca and 

mating scars 

24.5604 -110.406 05/04/2018 33588 C F Adult 103.5 65.0 
Distended cloaca and 

mating scars 

24.5604 -110.406 05/04/2018 33831 C F Adult 102.0 63.0 
Distended cloaca and 

mating scars 

24.5579 -110.397 06/04/2018 421 C F Juvenile 65.0 37.0  

24.5579 -110.397 06/04/2018 351 R F Juvenile 65.0 38.0  

24.5579 -110.399 07/04/2018 430 C F Juvenile 75.0 42.0  

24.5579 -110.399 07/04/2018 396 C M Juvenile 64.0 37.0  

24.5578 -110.399 07/04/2018 410 C F Juvenile 72.0 41.0  

24.5574 -110.399 07/04/2018 337 C F Juvenile 67.0 39.5  

24.5558 -110.405 04/06/2018 33593 C F Adult 102.0 66.0  

24.5558 -110.405 04/06/2018 33838 C M Adult 101.0 58.0 Sperm on claspers 

24.5558 -110.405 04/06/2018 33835 C M Adult 101.0 61.0 Sperm on claspers 

24.5558 -110.405 04/06/2018 33834 C M Adult 101.0 65.0 Sperm on claspers 

24.5558 -110.405 04/06/2018 33844 C M Adult 98.0 58.5 Sperm on claspers 

24.5659 -110.408 05/06/2018 33586 C M Adult 108.0 64.0  

24.5659 -110.408 05/06/2018 10 C F Adult 100.0 68.0 Heavily pregnant 

24.5659 -110.408 05/06/2018 33525 C M Adult 102.0 62.0  

24.5659 -110.408 05/06/2018 33837 C M Adult 105.0 61.0  

24.5659 -110.408 05/06/2018 33836 C M Adult 98.0 58.0  

24.5659 -110.408 05/06/2018 33833 C M Adult 98.0 61.0  

24.5568 -110.399 06/06/2018 400 C M Juvenile 73.0 39.0  

24.5568 -110.399 06/06/2018 412 C F Juvenile 87.0 52.5  
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24.5568 -110.399 06/06/2018 406 C F Juvenile 80.0 47.5  

24.5568 -110.399 06/06/2018 401 C M Juvenile 69.0 39.0  
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1.Introduction 

The reproductive behavior of many species of sharks and rays (elasmobranchs) is poorly understood 

due to the difficulties associated with observing courtship and mating events in the wild (Pratt and 

Carrier 2001). Much of the research on elasmobranch reproductive behavior has been conducted 

using fresh fisheries carcasses (Serrano–Lopez et al. 2021) where reproductive behavior is inferred 

from mating scars on females or the state of male claspers (Marshall and Bennett 2010; Rangel et al. 

2022; Whitehead et al. 2022), or from sporadic observations in the wild (Whitney et al. 2010; Arnés–

Urgellés et al. 2018) or captivity (Uchida et al. 1990, Smith et al. 2004). Few studies report specific 

reproductive grounds based on direct and repeated observations of courtship and mating behavior in 

the field with exceptions including whitetip reef shark Triaenodon obesus, reef manta rays M. Alfredi 

and basking sharks Cetorhinus maximus (Whitney et al. 2004; Marshall and Bennett 2010; Deakos 

2011; Stevens et al. 2018a; Sims et al. 2022). It is particularly important to identify the timing and 

location of elasmobranch reproductive behavior as such areas may be critical in providing specific 

conditions that support reproductive success. These areas may be important for elasmobranch 

conservation and management measures to ensure the viability of future elasmobranch populations 

(Hyde et al. 2022; Palacios et al. 2023).  
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Mobulid rays (manta and devil rays) are filter feeding batoids distributed in all oceans from temperate 

to tropical waters (Couturier et al. 2012; Stevens et al. 2018b). The Mobulidae family has the lowest 

fecundity of all elasmobranchs (Stevens et al. 2000; Dulvy et al. 2014), giving birth to just one pup per 

gestation period that lasts up to 13 months (Deakos 2011; Marshall and Bennett 2010; Stevens 2016; 

Broadhurst et al., 2019). Their reproductive cycles normally involve resting periods, with a two to seven 

year interval between pregnancies (Deakos 2011; Marshall and Bennett 2010; Stevens 2016). The 

reproductive strategy of mobulids is aplacental viviparity with histotrophy (Serrano–Lopez et al. 2021) 

and mate through internal fertilization (Conrath and Musick, 2012) occurring after courtship behaviors 

that can last from several minutes to days (Marshall and Bennett 2010; Stevens et al., 2018a). Studies 

of the reproductive behavior (courtship and mating) of mobulids have focused on a limited number of 

species such as the oceanic manta ray M. birostris, M. alfredi and sicklefin devil ray M. tarapacana 

(Marshall and Bennett 2010; Deakos 2011; Stevens et al. 2018a, b; Mendonça et al. 2020) with 

anecdotical observations of other mobulid species (spinetail devil ray M. mobular, bentfin devil ray M. 

thurstoni, Atlantic pygmy devil ray M. hypostoma and shorthorned pygmy devil ray M. kuhlii) (Coles 

1910; Duffy and Tindale 2018; McCallister et al. 2020; Carpenter and Griffiths 2023). These studies 

examined all or some of the seven stages described for mobulid courtship and mating (Stevens 2016; 

Stevens et al. 2018a). Courtship behavior includes the first four stages: initiation, endurance, evasion, 

pre–copulatory positioning, while mating behavior refers to the three stages when copulation, post–

copulation holding, and separation occurs (Stevens et al. 2018a). During courtship events, several 

individuals are involved, with one or two females are chased by males, in a formation described as a 

courtship train, numbering from just a few to up to 26 males (Marshall and Bennett 2010; Stevens et 

al. 2018a). Mobulid courtship aggregations have been described at: oceanic islands, seamounts, ridge 

systems, coral reefs, feeding aggregation sites and cleaning stations (Yano et al. 1999; Marshall and 

Bennett 2010; Sobral 2013; Stevens et al. 2018a; Germanov et al. 2019; Mendonça et al. 2020; 

Palacios et al. 2023). While reproductive behavior has been described for the larger mobulids (e.g., 

M. birostris, M. alfredi), there is only two observational description of courtship behaviors for the pygmy 

devil ray (M. hypostoma and M. kuhlii) (Coles 1910; Carpenter and Griffiths 2023) with only one mating 

event described (M. hypostoma) (Coles 1910). Lack of information currently exists on how or where 

these devil ray species mate or whether they follow the same courtship behaviors described for the 

better–studied species (Childs 2001, Notarbartolo–di–Sciara et al. 2019). In this study we use direct 

field observations to examine the courtship and mating behavior of three lesser-known devil ray 

species: M. mobular, M. thurstoni, and M. munkiana. 

Due to their conservative life history traits (Dulvy et al. 2014) and anthropogenic threats, including 

target fisheries and bycatch (Croll et al. 2016; Lezama–Ochoa et al. 2019), all mobulids species are 

listed as Endangered or Vulnerable on the IUCN’s Red List of Threatened Species (IUCN, 2023). In 

the Mexican Pacific, the most abundant devil ray species are M. mobular, M. thurstoni, and M. 
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munkiana (Notarbartolo–di–Sciara 1988; Serrano–Lopez et al. 2021). Mobulids have been protected 

in Mexico since 2006 by NOM–029–PESC–2006, and since 2019 by NOM–059–SEMARNAT–2010 

regulations, with their primary threats including incidental capture in artisanal fisheries using gillnets 

(Del–Valle–González–González 2018) as well as bycatch in industrial fisheries, especially in the tuna 

purse seine fishery (Croll et al. 2012; Croll et al. 2016; Lezama–Ochoa et al. 2019). In recent years, 

emerging nonregulated ecotourism activities based on snorkeling with mobulid aggregations have 

brought new economic opportunities to the local communities in the southern Gulf of California, 

Mexico. However, increasing ecotourism, particularly during critical life history stages and at key 

aggregation sites (e.g., mating, nursery), could potentially become a problematic source of 

disturbance (Murray et al. 2020).  

Mobula mobular and M. thurstoni are found globally in tropical and subtropical oceans, and can reach 

up to 3.20 m and 1.83 m disc width (DW), respectively (Stevens et al. 2018b, Stewart et al., 2018). 

Courtship for these species has been reported from direct observations at offshore areas of New 

Zealand (M. mobular, Duffy and Tindale 2018) and in Brazil (M. thurstoni, McCallister et al. 2020). In 

the southern Gulf of California, Mexico, M. thurstoni is present year–round (Notarbartolo–di–Sciara 

1988; Serrano–Lopez et al. 2021), while M. mobular is present April–August and  October–December 

(Notarbartolo–di–Sciara 1988; Croll et al. 2012; Serrano–Lopez et al. 2021).The reproductive season 

for these species occurs during June and July, inferred from morphometry and histology studies of 

fisheries caught individuals in this region (Notarbartolo–di–Sciara 1988; Serrano–Lopez et al. 2021). 

Mobula munkiana is distributed in the eastern tropical Pacific, is present year–round in the southern 

Gulf of California and reaches a maximum DW of 1.30 m (Stewart et al. 2018; Serrano–Lopez et al. 

2021; Palacios et al. 2021). No direct observations of M. munkiana reproductive behavior have been 

reported for this species; however, Palacios et al. (2021) speculated that they mate in the southern 

Gulf of California from April to June, based on courtship observations and the presence of sperm in 

the developed claspers of males captured at the Espiritu Santo Archipelago. 

Diver avoidance behavior by devil rays and a lack of survey effort focused on these three devil ray 

species has resulted in significant knowledge gaps in important life history parameters and behaviors, 

particularly reproduction. However, recent citizen science efforts, collaborations with tourism 

companies using spotter seaplanes, and the use of scientific drones has facilitated field observations 

in remote or inaccessible areas (Stevens et al. 2018a; Ehemann et al. 2022; Rambahiniarison et al. 

2022) and the collection of important behavioral and demographic data on mobulid species (Setyawan 

et al. 2020, 2022). 

Here, we examined the behavior, distribution and seasonality of reproductive events for M. mobular, 

M. thurstoni, and M. munkiana in the southern region of the Gulf of California, Mexico, to determinate 

(1) if reproductive grounds exist within the Gulf of California area for any of these species, (2) if 
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reproductive behavior of the three species follows a seasonal pattern and (3) if courtship and mating 

behavior is similar among mobulid species.  

2.  Methods 

2.1 Study area 

All reproductive behavior observations described in this study occurred in the southern region of the 

Gulf of California, along the east coast of the Baja California Peninsula, Mexico (Fig. 1, a, b). The 

area is characterized by sandy and rocky coastlines with deep depths (>3700 m), small tidal ranges 

(annual maximum range of 2.3 m), and sea surface temperatures ranging between 20–30º C (Brusca 

et al. 2005). The ocean productivity in the area is influenced by a monsoonal wind pattern, with 

northwesterly winds causing upwelling events during the cold season (December to May), with an 

average primary production of 10–mg. m–3 of sea surface chlorophyll a (Santamaría–del–Ángel et al. 

1999, Lavín and Marinone 2003). During the warm season (June to November), strong thermal 

stratification occurs, with warm water from the Pacific entering the southern Gulf of California, and 

southeast winds create weak upwelling on the peninsula east coast with an average primary 

production of 0.1–mg. m–3 (Santamaría–del–Ángel et al. 1999, Lavín and Marinone 2003).  

2.2 Data Collection 

2.2.1 Behavioral data 

Reproductive behavior refers to courtship and mating events and was distinguished from other 

behaviors such as feeding and cruising following the criteria proposed by Stevens et al. (2018a) for 

mobulids. We define breaching behavior as an arial behavior where individual mobulids accelerate 

rapidly towards the surface, propelling themselves clear of the water (Medeiros et al. 2021).  

Near–term pregnancy was identified by the distended abdominal area on the dorsal and ventral 

surfaces in females (Marshall and Bennett 2010, Stevens et al. 2018a). We confirmed the external 

evidence of late–term pregnancy using ultrasound on M. munkiana individuals (Palacios unpubl data). 

Maturity was stablished based on visual estimation of body size or elongated claspers beyond their 

pelvic fins (males) and presence of mating scars or wounds (females). Mating scars and wounds were 

identified as the parallel wounds scratches and abrasions healed (mating scars) or fresh (mating 

wounds) on females' left pectoral fins (dorsal or ventral) resulting from the teeth of conspecific males 

to hold her fin during copulation (Stevens 2016; Stevens et al., 2018a). Mating scars are evidence of 

past mating events (months or years) while mating wounds are evidence of recent mating events 

(days or weeks) (Stevens 2016; Stevens et al., 2018a).  

2.2.2 Boat surveys 

Between May 2021 and June 2022, a total of 69 survey–days (between 2 to 24 surveyed days per 

month) were conducted in La Ventana and Ensenada de Muertos area (Fig. 1, b). Each survey 

consisted of a non–systematic transect of at least five hours (7am–12pm) of observations from a small 

boat (panga) covering a fixed study area (Fig. 1, b) during conditions of Beaufort sea state ≤ 2. Once 
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an individual or mobulid group were located by sight (by their breaching behavior and/or swimming 

activity at or near the surface), the research boat remained ~20–m distant from the animals with the 

motor switched off or in neutral to record group information. A drone (DJI Mavic Pro 2) was launched 

from the boat and aerial observations were conducted flying at an altitude between 20 to 50 meters 

above ocean surface for 10–20 minutes. Finally, when possible, in–water observations were 

conducted by free divers taking video and/or still images using a GoPro7. For each sighting, we 

recorded date, time, location, species observed and estimated number of individuals, behavior, and 

when possible, pregnancy status and maturity stage.  

 

Figure 1. (a) Location of Baja California Peninsula in Mexico (b) Study area in the southwestern region 
of the Gulf of California. Black polygons indicate MPAs in the region: Cabo San Lucas (CSL), Cabo 
Pulmo (CP), Espíritu Santo Archipelago (ESA) and Bahía de Loreto (BL). Orange and yellow polygons 
are the areas surveyed by seaplanes, the red polygon is the area covered by boat surveys near 
Cerralvo Island (CI) and the black points are sightings reported by citizen scientists. (c) Survey effort 
(number of surveys, left axis) during 2021–2022 for two seaplanes, boat surveys, and sightings days 
from citizen scientists (colors correspond to the legend in panel b), and the number of reproductive 
events (right axis) observed (blue cross x). (d) Effort–corrected reproductive events by two seaplanes 
(orange line) and boat surveys (red bars) from March to August. 
 
2.2.3 Citizen science data 

Photographs and video files of mobulid reproductive events were collected from ecotourism guides 

and ecotourism boat captains in Baja California Sur (from La Paz to Cabo San Lucas, along the 

western Gulf of California coast) during 2017, 2021, and 2022. Images were elicited during public 

educational talks with local communities and submitted via email with information on the sighting date 
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and location. All reported sightings of M. mobular and M. thurstoni were accompanied by photographic 

material to verify the accuracy of the data. Mobula munkiana sightings from citizen scientists that did 

not have associated photographic evidence were only considered if provided by guides trained (n=5) 

in the collection of this data. These guides were trained on species identification and behavior 

recognition with the lead author of this study. All video and photographic materials are used with 

permission and include owner credit. 

2.2.4 Seaplane data 

During 2021–2022, spotter flights operated by private tourism companies were conducted on the 

southeastern portion of the Gulf of California, originating from La Paz, Baja California Sur. Although 

these flights did not follow a standardized transect, they were designed to spot megafauna in the area 

and all sightings of marine animals were recorded during the flight by trained observers with location, 

date, species, number of individuals or size of the group and, behavior. A total of 428 flights were 

conducted, each flight lasted between two to four hours for a total of 858.3 flight hours between 

January 2021 and December 2022. The total study area covered by these flights was 8,317 km2, and 

flights were conducted during all months of the year (Fig. 1, b Seaplane I). During May–August 2022 

seven flights covered an additional area of 8,547 km2 along the coast from Cabo San Lucas to Loreto 

(Fig. 1, b Seaplane II). The weather conditions during surveys were Beaufort sea state ≤ 3, no clouds, 

with light and gentle breeze. The aircraft used for these flights were an SLA Seaplane or a Citabria 

flying at an altitude of ~500–1,000 feet (152–305 m) at a ground speed between ~45–69 knots (83–

128 km–1). During these surveys maturity and sex of mobula individuals was assumed based on 

ongoing behavior (courtship trains).  

2.2.5 Analisis 

Individuals observed in videos and photographs were counted using the software ImageJ (ImageJ) 

using the multipoint tool. To estimate the number of reproductive events observations per effort, we 

divided the number of observations per week (from boat surveys) and per month (from seaplane 

observations) between the days at sea for each method. Maps were created using Surface Mapping 

System (Golden Software, Inc., https://www.goldensoftware.com/products/surfer) and the coastline 

data was extracted from GEODASNG (National Geophysical Data Center, 2000). 

3. Results 

A total of 221 direct observations of reproductive behavior were recorded between March and August 

in 2017 (n=1, 0.5%), 2021 (n=13, 6%), and 2022 (n=207, 93.5%) (Supplementary material Table 1). 

We recorded 126 (57%) courtship events by seaplane, 64 (29%) by boat surveys, and 31 (14%) by 

citizen science images (Table 1). The single copulation attempt event we observed for M. munkiana 

was recorded during boat surveys using the drone. All reproductive events were observed between 

the surface and ~5 m depth.  

 

https://imagej.net/ij/index.html
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Table 1. Number of reproductive events for each species and type of data collection method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Distribution and seasonality of reproductive behaviors 

All reproductive behaviors events occurred during spring and summer months (Fig. 2), coinciding with 

the transition between the cold season (December to May) and warm season (June to November) in 

the southern Gulf of California. The peak of reproductive events occurred during the month of May.  

Sightings were dispersed along 312 km of the east coast of the Baja California Peninsula, from Cabo 

San Lucas to Ensenada de Cortes at the entrance of San Jose Island channel between the peninsula 

coast and San Jose Island (SJI); however, the majority (n=209, 95%) occurred within La Ventana (LV) 

and Ensenada de Muertos (EM) areas (Fig. 3). Observations occurred between 4 m and 6.3 km of 

the coast, while the plane flew from 0 to 60 km offshore.  

Mobula mobular 

Courtship behavior was observed for M. mobular on ten events (Table 1) during the months of May 

(n=5) in 2017, 2021, 2022, July (n=4) in 2022, and August (n=1) in 2022. Sightings were dispersed 

more than 312 km along the east coast of Baja California Peninsula, from Cabo San Lucas to 

Ensenada de Cortes at the northern entrance of San Jose Island channel (Fig. 3, a). During a 

courtship event observed in May 2021, one of the females was pregnant in the last stages of gestation 

(evidenced by a highly distended abdomen). 

Mobula thurstoni 

Courtship behavior was observed for M. thurstoni on three events (Table 1) during the months of June 

(n=1) in 2021, July (n=1) in 2022, and August (n=1) in 2022. Sightings were dispersed more than 43–

km along the east coast of Baja California Peninsula, from El Saltito to Punta Arenas (Fig. 3, b). 

Mobula munkiana 

Species Data collection 

method 

Number of 

reproductive 

behavior events 

Mobula mobular Citizen science 3 

Seaplane 7 

Mobula thurstoni Citizen science 3 

Mobula munkiana Boat surveys 64 

Citizen science 25 

Seaplane 119 

 Total Events 221 
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Reproductive behavior was observed for M. munkiana on 208 events (Table 1) during the months of 

March (n=4) in 2022, April (n=5) in 2022, May (n=177), June (n=16) and July (n=3) during 2021–2022, 

and finally in August (n=3) in 2022. The peak of sightings was during the month of May in both years. 

During this peak, increased courtship activity was observed for the last 10 days of the month. Sightings 

were dispersed more than 184 km along the east coast of Baja California Peninsula, from El Saladito 

in the Bay of La Paz to Cabo Pulmo (Fig. 3). A copulation attempt was observed (n=1) during a boat 

survey (28 May 2022) and filmed with the drone. In addition, the following day during a boat survey 

(29 May 2022) a large number of courtships trains were observed in La Ventana over an extended 

area. A seaplane flight flying in a straight transect of 8.06 km (Supplementary material Fig. 1) in the 

area counted 102 courtship trains on 29 May 2022.  

 

Figure. 2 Seasonality of M. mobular, M. thurstoni and M. munkiana reproductive behavior in the 
southern Gulf of California based on fisheries information from previous research (Notarbartolo–di–
Sciara 1988; Guerrero–Maldonado 2002; Serrano–Lopez et al. 2021) and from direct observations 
reported on this study. Red indicates warm water months, while blue indicates cold water months. 
White colored months indicate absence of the species in the study area (Notarbartolo–di–Sciara 1988; 
Serrano–Lopez et al. 2021). Black crosses (x) indicate courtship and mating from the literature, and 
white crosses (x) indicate courtship and mating observations in the present study. Devil ray species 
illustrations by Julie Johnson, Life Science Studio. 
 
3.2 Reproductive Behavior Description 

Here we provide detailed descriptions of the reproductive behaviors of these species.  

Mobula mobular 

The number of individuals involved in the documented M. mobular courtship events (n=10) ranged 

from two to nine, with the sex of individuals determined for three of these events (recorded by citizen 
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science observations) (Fig. 4). Three of the seven stages of courtship and mating behavior (Stevens 

et al. 2018a) were recorded. Detailed descriptions of events are provided below. 

Event 1: On 5 May 2017 at Cabo San Lucas (Fig. 4, a–d) a group of nine individuals (two females 

and seven males) were observed engaging in courtship behavior. One of the females was chased by 

seven males at high–speed close to the surface (endurance) (Fig. 4, a), with one of the males 

approaching the female by the ventral side (Fig. 4, b). The female performed one forward somersault, 

copied by two males (evasion) (Fig. 4, c) and one minute and 10 seconds later reduced speed, and 

stopped at the surface (pre–copulation positioning), while one of the males approached her from 

underneath (Fig. 4, d). Right after the female swam down followed by one male and the observations 

stopped. 

Fig. 3 (a) Southern portion of Baja California Peninsula, with reproductive behavioural events (colored 
dots) observed between 2017–2022 for M. mobular (green), M. thurstoni (yellow), M. munkiana (red). 
Black polygons indicate MPAs in the region: CSL, CP, ESA (b) Expanded detail in the area of La 
Ventana (LV), Ensenada de Muertos (EM), and Cerralvo Island (CI) as indicated by the yellow polygon 
in (a). 
 
Event 7: On 20 May 2021 at the Espiritu Santo Archipelago (Fig. 4, e–h), one near–term pregnant 

individual, was chased by three males (endurance) (Fig. 4, e), one of the males subsequently 

positioned himself on top of the female’s dorsal surface attempting to reach and bite the left pectoral 

fin of the female (pre–copulation positioning) (Fig. 4, f–g). After two failed attempts the female 

performed four forward somersaults copied by the same male (evasion) (Fig. 4, h) 
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Event 8: Another event was observed in proximity and on the same day (Fig. 4, i–j). It involved one 

female and one male performing erratic movements and forward somersaults (evasion) (Fig. 4, i) and 

the positioning of the male on top of the female, trying to reach the female’s left pectoral fin (pre–

copulation positioning) (Fig. 4, j). 

Mobula thurstoni 

The number of individuals in M. thurstoni courtship groups ranged between three to five, although 

courtship occurred within bigger groups (>10) that included individuals not engaging in reproductive 

behavior. Three of the seven stages of courtship and mating behavior (Stevens et al. 2018a) were 

recorded for M. thurstoni. Detailed descriptions of events are provided below. 

Event 209: On 28 June 2021 at El Saltito Beach (Fig. 5, a–d) a group of five individuals (one female 

and four males) were engaged in courtship behavior at the surface. A female with mating scars on her 

left pectoral fin was chased at speeds elevated above average swimming speed by three males 

(endurance) (Fig. 5, a–b). The female performed erratic movements; changes of direction, and 

somersaults (evasion) (Fig. 5, c). During these movements, the female was copied by a male directly 

behind her during the entire observation period. This male approached the female from underneath, 

and then positioned himself on top of the female (pre–copulation positioning) (Fig. 5, d).  

Event 210: On the 1 July 2022 at Punta Arenas (Fig. 5, e–h) a female with fresh mating wounds on 

her left pectoral fin was chased by three males in a courtship train (endurance) (Fig. 5, e), while 

performing turns (evasion) (Fig. 5, f). The third male in the train advanced position and speed to a 

position on top of the female’s dorsal surface (pre–copulation positioning) (Fig. 5, g–h).  

Event 217: On the 5 August 2022 in La Ventana (Fig. 5, i–j) within a group of M. thurstoni (>10), a 

courtship train of two males was recorded chasing a female (endurance) (Fig. 5, i) and performing 

backward somersaults (evasion) (Fig. 5, j). 

Mobula munkiana 

We observed a maximum of 29 M. munkiana individuals in a single reproductive group. We recorded 

five of the seven stages of reproductive behavior (Stevens et al. 2018a) in M. munkiana. Below, we 

present descriptions of two previously undocumented reproductive behaviors for mobulids, the 

courtship vortex and the piggyback leaping (pre-copulatory behavior) enhancing and broadening our 

comprehension of pygmy devil ray reproductive behaviors. 

Event 6: On 19 May 2021 at Ensenada de Muertos (Fig. 6, a–c) a vortex formation at the surface 

between 2 to 5 m wide was observed during a five–hour period starting the observation at 9: 40 am 

(Supplementary material, Video 1). During this event, females and males (n = 122) were swimming 

at a consistent average swimming speed, circling in a clockwise direction, collectively swimming up 

and down to a maximum of 5 m depth in the water column. No feeding was observed, yet numerous 

small courtship trains (approximately 20) where a female was chased by one to three males regularly 

occurred (Fig. 6, a). The individuals in courtship trains did not separate more than 5–10m from the 
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main formation (Fig. 6, b–c), returning to the courtship vortex after a few seconds of chase 

(endurance). Sexually mature males engaged in these courtship trains. No visible pregnant females 

were observed within the group. Some females presented abrasions on the lower area of their dorsal 

surface probably produced by the pre–copulatory positioning of the male on top of them (Fig.7, a-d). 

Breaching behavior was not observed in the vortex during the five–hour observation period.  

Events 87–188: On 29 May 2022 at La Ventana (Fig. 6, d–e), 102 courtship groups were observed 

at the surface between 7:24 and 9:10 am. Reproductive behavior consisted of courtship trains 

(initiation, endurance, and evasion) dispersed within La Ventana area in a straight transect of 8.06 km 

(Supplementary material, Fig. 1). Courtship groups occurred at the surface, while larger groups 

(>100 individuals) of M. munkiana remained cruising a few meters below. On many occasions several 

courtship events occurred in proximity. Courtship trains were dynamic with males switching chasing 

one female to another nearby female. 

Event 84: On 28 May 2022 at La Ventana (Fig. 6, f–i) a group of 29 individuals (one female and 28 

males) were engaging in courtship behavior (Supplementary material, Video 2). The group was 

observed for 45 minutes and included one female swimming at below average cruising speed at the 

surface with her pectoral fins often lifting out of the water. The males (28) were circling, chasing her, 

and swimming from behind positioning themselves on top of her (piggyback leaping) as a pre-

copulatory behavior (Fig.7), approximately 135 times during the observation period. The female swim 

speed increased when a male positioned himself directly behind or onto her dorsal surface, turning 

her swim angle acutely or flipping forwards (evasion). After successfully evading the male, the female 

returns to the surface and resumes below average swim speeds, slowly moving around within a small 

area (approx. 50 m2). 

Although individual males could not be identified, preventing from an assessment of the number of 

different males which chased the female, some male individuals chased each other away when in 

proximity to the female (Supplementary material, Video 3). On one occasion one male approached 

the female from underneath while up to three males rushed from behind and swam on top of her 

(piggyback leaping) (Fig. 6, g). However, the most common behavior was when males, one at a time, 

approached the female from the ventral part and then slid along one of the female's pectoral fins and 

swam on top of her (piggyback leaping). When on top of the female, males erected their tail dorsally 

at 90º (Fig. 7 b, c), bending their pelvic area and making rapid pelvic thrusts (Supplementary 

material, Video 4). On one occasion, we observed a clear copulation attempt where the male swam 

on top of the female and started to make rapid pelvic thrusts, they both subsequently sank towards 

the bottom while spinning around (copulation attempt) for 14 seconds. The pair then separated, and 

the female swam off to the surface (Supplementary material, Video 2). Immediately after, courtship 

behavior continued with this female and other males in the group.  
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Figure 4. Mobula mobular courtship events. Event 1: (a, b) endurance, (c) evasion, (d) pre–copulation 
positioning. Photo © Marta D. Palacios. Event 7: (e) endurance, (f, g) pre–copulation positioning, and 
(h) evasion. Event 8: (i) evasion and (j) pre–copulation positioning. Photo © Paulo Gómez Aldana 
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Figure 5. Mobula thurstoni courtship events. Event 209: (a, b) endurance, (c) evasion, (d) pre–
copulation positioning. Photo © Adriá Bosch–Soler. Event 210: (e) endurance, (f, g, h) evasion and 
(g) pre–copulation positioning. Photo © Maru Brito. Event 217: (i) evasion and (j) pre–copulation 
positioning. Photo © Afelandra González–Cibrián. 
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Figure. 6 Mobula munkiana courtship and mating event. Event 6: (a) endurance and (b, c) courtship 
vortex. Photo © Shawn Hendrich and Jay Clue. Event 111: (d) endurance. Photo © Marta D. Palacios. 
Events 85–186: (e) view of courtship trains from the seaplane in a circle. Photo © Sidharta Velázquez–
Hernández. Event 84: (f) Evasion, (g, h) pre–copulation positioning and (i) copulation attempt. Photo 
© Marta D. Palacios 
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Figure 7. Reproductive behavior of M. munkiana: piggyback leaping. (a) Male positioning himself onto 
the female dorsal surface (event 82). (b, c) Examples of males erecting their tails when on top of the 
female (events 82 and 72). Photos © Laurent Ballesta. (d) Courtship abrasions on the posterior half 
of the disc on female’s dorsal side indicated by white arrows (May 2022). Photo © Marta D. Palacios. 
 
3.3 Associated observations 

Pregnancies 

Mobula mobular (n=1) (event 7) (Fig. 7, a) and M. munkiana (n=10) (events 5, 11, 12, 27, 28, 50, 62, 

73, 205, 206) females showing evidence of later–term were observed engaging in courtship behaviors 

during the months of May and June 2021–2022.  

Mating scars, fresh mating wounds and courtship abrasions 

Parallel fresh mating wounds scratches and abrasion on females' left pectoral fins (dorsal or ventral) 

resulting from the teeth of conspecific males were observed only on the left side in M. thurstoni during 

courtship (Fig. 8, b, c). We recorded mating scars on a female on the ventral part of the left pectoral 

fin at El Saltito Beach (event 209) (Fig. 5, a–d), and fresh mating wounds on a female engaging in 

courtship train at Punta Arenas (event 210) (Fig. 5, e–h). 
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Figure 8. (a) Near-term M. mobular engaging in a courtship (event 7). Photo © Paulo Gómez–Aldana 
(b, c) Females M. thurstoni with fresh mating wounds indicated by white arrows (event 210 and June 
2019). Photos © Maru Brito and Cecilia Mar–Ruiz (d) M. munkiana female with courtship abrasions 
(posterior dorsal area) and scars on her left pectoral fin resulting from the male's biting hold of her fin 
during copulation indicated by white arrows (May 2022). Photo © Marta D. Palacios. (e) Female M. 
munkiana with fresh mating wound indicated by white arrows (May 2022). Photo © Marine Bruges (f) 
M. munkiana females with courtship abrasions (posterior dorsal area) indicated by white arrows (May 
2023). Photo © Karissa Nanetta. 
 

We recorded mating scars and mating fresh wounds in M. munkiana on the left pectoral fins (Fig. 8, 

d, e). We also recorded a new indicator of courtship activity for this species, the courtship abrasions, 

wich are visible on the posterior half on M. munkiana dorsal side (Fig.7, d and Fig. 8, d, f). These 

abrasions appear as a result of the repeated back-leaps from males onto the female’s dorsal surface 

during courtship, when performing the pre-copulatory behavior “piggyback leaping”. Although we did 

not record the number of individuals presenting these courtship abrasions due to the large size of 

groups and the high frequency of these abrasions, we observed the courtship abrasions on near–term 

pregnant females, mature females and males. Pregnant females showing courtship abrasions on their 

lower dorsal area didn't always have pectoral fin mating scars or wounds. These courtship abrasions 

were also visible on female individuals outside of the reported reproductive period (November) 

(Supplementary material, Fig. 2). 
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Figure 9. Mobula munkiana breaching behavior (a) Adult male. Photo © Blanca Idalia González–
Garza (b) Juveniles. Photo © Juan Camilo Mora–Parra (c) non–pregnant female. Photo © Antoni 
Murcia (d, e) Pregnant females with fetal bulge on their dorsal side indicated by white arrows. Photos 
© Jay Clue (f) Pregnant female with fetal bulge and courtship abrasions on its dorsal side indicated 
by white arrows. Photo © Antoni Murcia. 
 
Breaching behavior 

We only recorded breaching groups in M. munkiana, although single individuals of M. thurstoni were 

also frequently sighted breaching out of the water during all surveyed months in 2021–2022. During 

boat surveys (n= 64), M. munkiana breaching groups were recorded (n=58 of a total 118 groups, 49%) 

between 2021–2022. We observed breaching behavior in individuals of all maturity stages (juveniles 

and adults) and sexes (male and female), and in pregnant females (Fig. 9, a–f). During some of the 

breaches, the individuals shook their pectoral fins when they had a remora attached to their bodies. 

During courtship, breaching was not observed among individuals that were engaging in reproductive 

behavior, whereas breaching was observed among individuals within the larger groups who were not 

actively participating in the courtship. Near–term pregnant females breaching were common sights 

during the months of May and June (Fig. 9, d–f). Different kinds of breaches were observed for this 

species, breaching forward to land on the ventral surface or slapping the surface of the water with 

their pectoral fins, breaching and landing on one side, as well as breaching to land on the dorsal 

surface.  
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4. Discussion 

Distribution and seasonality  

This study extends the reproductive season described for three (M. mobular, M. thurstoni, M. 

munkiana) of the five mobulid species present in the Gulf of California. Previously, M. mobular and M. 

thurstoni were reported to reproduce during June and July, inferred from dead specimens from 

artisanal fisheries (Notarbartolo–di–Sciara 1988; Guerrero–Maldonado 2002; Serrano–Lopez et al. 

2021). However, based on direct observations of living animals in this study, reproductive behavior 

occurs from May to August for M. mobular; two months longer than previously reported. We found 

that the reproductive season for M. thurstoni occurs from June to August; one month longer than 

previously reported (Serrano–Lopez et al. 2021). Mobula munkiana was observed displaying 

reproductive behavior from March until August; an extension of three months (Palacios et al. 2021). 

In the south–west Gulf of California, these three species are found in greatest abundance during the 

spring and summer (March–July) (Notarbartolo–di–Sciara 1988; Palacios et al. 2021; Serrano–Lopez 

et al. 2021), likely correlated to the abundance peak of their main prey in the region, the euphausiid 

Nyctiphanes simplex (Gendron 1992; Sampson et al. 2010). This time frame also coincides with the 

transition from the cold season (December–May), when northwest winds lead to lower sea surface 

temperature (SST) between 21–24 ºC, to the warm season (June–November), when weaker winds 

from the southeast bring warm tropical water from the Pacific and SST are between 27–31 ºC 

(Herguera et al. 2001; Lluch–Cota et al. 2007).  

The extension of these reproductive seasons could be the result of the combination of our larger study 

area throughout the year than previous studies (Notarbartolo–di–Sciara 1988; Guerrero–Maldonado 

2002; Serrano–Lopez et al. 2021; Palacios et al. 2021) and the different observational methodologies 

used (drone, in–water observation, citizen science, and seaplanes) which have proven to be useful in 

the collection of behavioral data (Fiori et al. 2017; Stewart et al. 2018; Oleksyn et al. 2021; Palacios 

et al. 2023). Direct observations of courtship events for M. mobular and M. thurstoni have been 

previously reported at offshore areas and remote archipelagos (Duffy and Tindale 2018; McCallister 

et al. 2020). In our study, reproductive events occurred between 4 m to 6.3 km from the Baja California 

Peninsula coastline or adjacent islands. The southern Gulf of California is characterized by steep 

slopes, with a narrow shelf and deep basins where enriched waters contribute to a high primary 

production close to the coast (Lavín and Marinone 2003; Lluch–Cota et al. 2007). The greatest number 

of reproductive events occurred at La Ventana, a channel with a maximum width of 17 km and 293 m 

depth between the peninsula coast and the island of Cerralvo (Nava–Sanchez et al., 1995), and at 

Ensenada de Muertos, where the ocean floor falls to 300 m within the first 2 km from the coast. These 

bathymetric features, in conjunction with high seasonal productivity during spring (Lluch–Cota et al. 

2007), may favor high abundance of food and optimal conditions for the aggregation of large numbers 
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of devil rays, facilitating the encounter of potential mating partners; similar to other reproductive 

aggregations in other elasmobranchs (Sims et al. 2022; Palacios et al. 2023). 

Reproductive behavior 

Reproductive behavior for manta ray species is well established in seven stages (Stevens et al. 2018a) 

of which we observed five during this study; endurance, evasion, and pre–copulation positioning were 

the most common. 

For M. munkiana, we describe two new courtship behaviors: the courtship vortex and the piggyback 

leaping. Vortex formations are regularly performed by M. munkiana in the La Ventana area, probably 

for predator avoidance and as a coordinated feeding strategy (Palacios et al. in prep), similar to the 

cyclone feeding of M. alfredi in Maldives (Stevens 2016; Armstrong et al. 2021). However, we 

hypothesize that the courtship vortex observed in this study has a reproductive function based on the 

absence of feeding behavior or visible predators in the area (Higuera–Rivas et al. 2023) throughout 

the five hours of the encounter. Further, the presence of sexually mature individuals of both sexes 

(males with elongated claspers and females with mating scars) and the observation of courtship trains 

entering in and out of the main formation indicates that this may represent a social and reproductive 

aggregation where adults assess and chose potential mates before engaging in individual courtship 

trains and copulation. The structure and speed of the vortex allowed physical contact among most of 

the individuals within the vortex, especially those situated in the center. Similar behaviors have been 

studied for basking sharks (Cetorhinus maximus) (Sims et al. 2022) but have never been reported for 

mobulid species (Yano et al. 1999; Pratt and Carrier 2001; Marshall and Bennett 2010; Deakos 2011; 

Stevens 2016; Stevens et al. 2018a; Mendonça et al. 2020). 

In addition, a new courtship behavior was observed on M. munkiana mature males, the piggyback 

leaping. This courtship strategy consists of back-leaps performed by mature males onto the females 

back. To achieve this, males actively pursue the female, positioning themselves directly behind or 

beneath her to execute these leaps. This behavior occurs while the female is right at the surface, likely 

to prevent the males from getting onto her dorsal surface. Since we did not observe males rubbing 

the backs of the females with their cephalic fins at any time (Stevens et al. 2018a), it is likely that these 

dorsal abrasions could be the result of the leaping on top of the female from behind as the males 

attempt to copulate (Fig. 7, a-d). These repeated leaps create “courtship abrasions” visible several 

months after the end of the reproductive season (up to 3 months) for this species (Supplementary 

material, Fig. 2). The presence of these courtship abrasion on some adult males, were probably the 

result of the simultaneous back leaps, where several males leaped onto the female at the same time. 

Therefore, the presence of these courtship abrasions could be used as an indicator of sexual maturity 

on M. munkiana. 

Male biting of the pectoral fins of the female during reproductive events is a reproductive behavior in 

elasmobranchs (Klimley 1980; Uchida et al. 1990; Pratt and Carrier 2001; Marshall and Bennett 2010), 
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and in mobulids is included in the pre–copulation positioning phase (Stevens et al. 2018a). This 

behavior enables the proper positioning of the male for the insertion of the claspers in the female 

cloaca, while the female remains motionless during copulation (Kajiura et al. 2000) and results in 

female pectoral fin abrasions, wounds, and permanent scars (Yano et al. 1999; Marshall and Bennett 

2010; Stevens et al. 2018a). Devil ray species have teeth on both jaws (Notarbartolo–di–Sciara 1987; 

Stevens et al. 2018b), leaving mating scars on both sides of the females’ pectoral fins when biting 

occurs. Wounds or mating scars (Marshall and Bennett 2010; Stevens et al. 2018a) (Fig. 8, b–d) were 

present on the dorsal and ventral sides of M. thurstoni individual’s pectoral fins, while M. munkiana 

individuals also presented courtship abrasions on the posterior half of the disc.  

During copulation attempts, M. munkiana males did not always wait until pre–copulation positioning 

(e.g., biting the female’s pectoral fin) before erecting their tail, bending their pelvic area, and making 

rapid pelvic thrusts for copulation (Fig. 7, b, c) (Supplementary material, Video 4).  

Breaching behavior 

Breaching behavior, or leaping, is a commonly observed behavior in elasmobranchs, with several 

species (thresher shark, basking shark, white shark, eagle rays, and blacktip sharks) breaching for 

various hypothesized reasons including feeding, courtship, parasite removal, and predator avoidance 

(Curtis and Macesic, 2011, Berthe et al. 2018; Gore et al. 2019). Breaching behavior for the mobulids 

has been hypothesized as a form of signaling mechanism to aggregate for reproduction (Marshall and 

Bennett 2010; Medeiros et al. 2021; Stevens et al. 2018a). The males breach to attract more potential 

mates and demonstrate their fitness by creating as loud a splash as possible, while the females breach 

to attract more potential mates from which to select a partner from during courtship (Stevens 2016). 

While breaching behavior may be related to reproductive behavior in M. munkiana, it is important to 

note that we observed all maturity stages (juveniles, adults, and pregnant females) and sexes 

breaching. Additionally, we found that breaching occurred year-round in the Gulf of California, 

including outside of the reproductive season, suggesting that it is highly likely this behavior is also 

driven by other biological functions as well. Based on this evidence we hypothesize that most 

breaching events for M. munkiana may be a form of communication meant to attract other groups or 

individuals to a certain area to feed, perhaps cooperatively, or as a predator avoidance mechanism. 

These functions have been suggested for M. alfredi during coordinated feeding events (e.g., cyclone 

or chain feeding) in Maldives (Stevens 2016; Armstrong et al. 2021) and for M. birostris in estuarine 

environments in Brazil (Medeiros et al. 2021). Breaching behavior may also be related to parasite 

removal: during some of the breaching events, we observed M. munkiana actively shake pectoral fins 

where remoras were attached, and similar behavior has been observed for other elasmobranchs 

(Ritter and Brunnschweiler 2003; Brunnschweiler 2006). 
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5. Conservation implications 

The southwestern Gulf of California is a reproductive area for M. mobular, M. thurstoni, and M. 

munkiana, based on our observations and on histological and morphological studies previously 

conducted in the area (Notarbartolo–di–Sciara 1988; Serrano–Lopez et al. 2021). Reproductive 

behavior for these three species has been observed in this area from March to August. This period 

extends three months outside of the currently established elasmobranch fishing ban in the Mexican 

Pacific, which extends from the first of May to the first of August. Although mobulids have been 

protected from target fisheries in Mexico since 2006 (NOM–029–PESC–2006), gillnets, longlines and 

simpleras (bottom–fixed lines with baited hooks) are used in the Gulf of California by artisanal and 

industrial fisheries to legally fish for stingrays and sharks during the other nine months of the year 

(Bizzarro et al. 2009; Del–Valle–González–González 2018). The main threats to mobulids in the study 

area includes commercial fisheries, such as industrial purse seiners targeting tuna (Croll et al. 2016; 

Lezema-Ochoa et al. 2019), shrimp boats, artisanal gillnets and illegal fishing activities that specifically 

target devil rays (Palacios unpubl data). Mobula mobular and M. thurstoni are the dominant species 

captured as bycatch in industrial fisheries in the region (Lezama–Ochoa et al. 2019). While the extent 

of the impact of bycatch and target fisheries on M. munkiana is unknown across its range (Alfaro–

Cordova et al. 2017, Lezama–Ochoa et al. 2019), high rates of mobulid bycatch in artisanal gillnets 

have been observed within the study area (Del–Valle–González–González 2018; Palacios unpubl 

data). The lack of spatial management for shark and ray fisheries (Bizzarro et al. 2007) and the use 

of non–selective gear (gillnets) in Mexico, coupled with the limited enforcement of existing regulations 

potentially puts critical habitats at risk, even for protected species like mobulids (Salomón–Aguilar 

2015; Jabado et al. 2023). Establishing greater spatial and temporal restrictions on the use of gillnets 

along the coast and islands in the southwestern Gulf of California, especially around critical habitats 

such as reproductive grounds (La Ventana and Ensenada de Muertos area) and nursery areas 

(Espiritu Santo Archipelago) (Palacios et al. 2021) may help reduce the impact of bycatch of these 

species during key life periods.  

The results of this study indicate reproductive areas are within 6.3 km of the coast, where we observed 

surface aggregations of the three devil ray species. This distribution makes them vulnerable not only 

to bycatch, but to other anthropogenic threats such as an increasing coastal development in the region 

and the associated sound and chemical pollution, habitat loss, and boat traffic. During our surveys we 

observed reproductive behavior at the surface, creating the potential for individuals engaging in 

reproduction to be exposed to boat strikes potentially resulting in lethal or sublethal injuries 

(Womersley et al. 2022; Strike et al. 2022). Furthermore, currently unregulated tourist activities 

offering free diving and snorkeling with devil rays, especially M. munkiana, is growing in the area with 

more than 80 tourism companies (Bruges et al. in prep) providing new economic opportunities to local 

communities. Currently, little is known about the extent to which these activities affect the reproductive 
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behavior and movement patterns of these species. However, unregulated tourism has negatively 

impacted manta rays in the Maldives, Australia (Venables 2013; Venables et al. 2016) and Mexico 

(Gómez–García et al. 2021), showing to disrupt or stop natural behaviors during 37% of the 

observations (Murray et al. 2020). The establishment of management measures, including studies of 

the optimal carrying capacity for mobulid tourism (Zekan et al. 2022), and codes of conduct to observe 

and interact with these species may help mitigate the negative impacts of tourism activities (Murray 

et al. 2020) at reproductive grounds while offering economic benefits to local communities (O’ Malley 

et al. 2013). 

Only four of the 221 reproductive behavior events occurred inside a marine protected area (MPA) 

(Espiritu Santo Archipelago and Cabo Pulmo), with only Cabo Pulmo being a strict no–take MPA. This 

is of potential concern because near–term mobulids are routinely thought to mate within hours or days 

of giving birth (Stevens et al. 2018a). This is supported by our observations of heavily pregnant M. 

mobular and M. munkiana females engaging in courtship behavior indicating it is likely that birthing 

areas are located adjacent to these nursery areas, as previously described for M. munkiana (Palacios 

et al. 2021). This suggests that further spatial protection of reproductive areas could be useful to 

simultaneously protect both nursery, courtship, and mating areas. Recently, several Important Shark 

and Ray Areas (ISRA) (Hyde et al. 2022) have been established in the Mexican Pacific and Gulf of 

California (Jabado et al. 2023), however, some of the critical habitats for reproductive behavior 

reported in this study such as the Ensenada de Muertos area are not covered inside the designated 

polygons of ISRA. The existing MPAs in the region prove inadequate for mobulids, needing immediate 

action to improve spatial protection against gillnets, industrial fisheries, and other anthropogenic 

threats.  
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Supplementary material  
 
 

 
Figure 1 (Supplementary material). Straight seaplane transect (8.06 km distance) in La Ventana 
Bay on 29 May 2022. LV (La Ventana), EM (Ensenada de Muertos) and CI (Cerralvo Island). 
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Figure 2 (Supplementary material). Courtship abrasions on mature female and males outside of the 
reported reproductive season (November 2022). (b) White arrows indicate elongated claspers on 
mature male. Photos (a) Wojciech Dopierala (b) © Sara Jaramillo. 
 
Table 1 (Supplementary material). Reproductive behavior events in the southern Gulf of California 
2017, 2021-2022. Courtship trains refer to initiation, endurance, evasion and piggyback leaping 
behavior. Events in yellow have graphic evidence provided in this work. LINK: HERE 
 
Video 1. Courtship vortex of M. munkiana on 19 May 2021 at Ensenada de Muertos. LINK: HERE 
Video 2. Copulation attempt of M. munkiana on 28 May 2022 at La Ventana (event 84). The female 
individual in the group can be identified by a darker coloration and by a small with dot on top of her 
head. Copulation attempt occurs at minute 1:10. LINK: HERE 
Video 3. Piggyback leaping behavior of M. munkiana (fragment of event 84). LINK: HERE 
Video 4. Example of copulation behavior (male erect his tail, bend his pelvic area, and makes 1 rapid 
pelvic thrusts). LINK: HERE 
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GENERAL CONCLUSION.  
 

With all mobulids species categorized as either Endangered or Vulnerable by the IUCN and presenting 

the lowest fecundity among all elasmobranchs, immediate attention and concerted efforts on a global 

scale are needed. The identified threats, ranging from fisheries and unregulated tourism to habitat 

loss, boat strikes, entanglements, and climate change, collectively pose an existential threat to the 

devil rays.  

 

In conclusion, the findings presented in this thesis underscore the urgent need for comprehensive 

conservation measures to safeguard the world's devil ray populations and their critical habitats. The 

lack of comprehensive information on critical aspects of their biology, such as key life history traits, 

critical habitats, and migratory routes, further exacerbates the challenges in formulating effective 

conservation strategies.  

This research highlights the importance of fostering collaborative efforts among scientists, 

policymakers, fishermen, and local communities to fill the existing information gaps and implement 

conservation measures that can ensure the survival and recovery of devil ray species in Mexican 

waters. 

 

Additionally, the thesis advocates for the regulation of tourism activities, and the mitigation of irregular 

practices to secure a future for devil rays in the Gulf of California and Mexican Pacific and the local 

communities that can benefit from their protection and conservation. The insights derived from this 

research contributed significantly to the foundation of knowledge necessary for the formulation of 

evidence-based conservation strategies. This included the formulation of management plans for 

Marine Protected Areas in Baja California Sur. 

 

 

 

 

 


